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Abstract

We incorporate externalities into the stable matching theory of two-sided markets. Ex-

tending the classical substitutes condition to allow for externalities, we establish that stable

matchings exist when agent choices satisfy substitutability. In addition, we show that the

standard insights of matching theory, like the existence of side-optimal stable matchings

and the deferred acceptance algorithm, remain valid despite the presence of externalities

even though the standard fixed-point techniques do not apply. Furthermore, we establish

novel comparative statics on externalities.

1 Introduction

Externalities are present in many two-sided markets. For instance, couples in a labor market

pool their resources as do partners in legal or consulting partnerships. As a result, the pref-

erences of an agent may depend on the contracts signed by the partner(s). Likewise, a firm’s

hiring decisions are affected by how candidates compare to competitors’ employees. Finally,

because of technological requirements of interoperability, an agent’s purchase decisions may

change because of other agents’ decisions.
∗First online version: August 2, 2014; first presentation: February 2012. We would like to thank Peter Chen

and Michael Egesdal for stimulating conversations early in the project. For their comments, we would also like
to thank Omer Ali, Andrew Atkeson, James Fisher, George Mailath, Preston McAfee, SangMok Lee, Michael
Ostrovsky, David Reiley, Michael Richter, Tayfun Sonmez, Alex Teytelboym, Utku Unver, Simpson Zhang, and
audiences of presentations at UCLA, Carnegie Mellon University, the University of Pennsylvania Workshop on
Multiunit Allocation, AMMA, Arizona State University, Winter Econometric Society Meetings, Boston College,
Princeton, and CIREQ Montreal Microeconomic Theory Conference. Pycia is affiliated with UCLA, 9371 Bunche
Hall Los Angeles, CA 90095; Yenmez is affiliated with Boston College, 140 Commonwealth Ave, Chestnut
Hill, MA 02467. Emails: pycia@ucla.edu and bumin.yenmez@bc.edu. Pycia gratefully acknowledges financial
support from the William S. Dietrich II Economic Theory Center at Princeton University, and Yenmez gratefully
acknowledges financial support from National Science Foundation grant SES-1326584.

1



In this paper, we incorporate externalities into the stable matching theory of Gale and Shap-

ley (1962) and Hatfield and Milgrom (2005).1 We refer to the two sides of the market as buyers

and sellers. Each buyer-seller pair can sign many bilateral contracts. Furthermore, each agent

is endowed with a choice function that selects a subset of contracts from any given set condi-

tional on other agents’ contracts. We build a theory of matching with externalities that both

extends to this more general setting some of the key insights of the classical theory without

externalities, such as the existence of stable matchings and Gale and Shapley’s deferred ac-

ceptance (or cumulative offer) algorithm and establishes new insights, including comparative

statics on externalities.

Our theory is built on a substitutes condition that extends the classical substitutes condition

to the setting with externalities.2 We require that each agent rejects more contracts from a larger

set (as in the classical substitutes condition) and also that each agent rejects more contracts

conditional on a matching that reflects better market conditions for his side of the market. We

formalize the latter idea in two steps. A matching reflects better market conditions for one

side of the market than another matching whenever the first matching is chosen by agents on

this side of the market from a larger set conditional on a matching while the second matching

is chosen by the agents from a smaller set conditional on the same matching. The second

matching then reflects worse market conditions. Furthermore, we also say that a matching

reflects better market conditions for one side of the market than another matching whenever the

first matching is chosen by agents on this side of the market from some set conditional on some

matching while the second matching is chosen by these agents from a smaller set conditional

on a matching that reflects worse market conditions. When there are no externalities, this

substitutes condition reduces to the classical gross substitutes condition of Kelso and Crawford

(1982) and Hatfield and Milgrom (2005).

We start by proposing an algorithm akin to the deferred acceptance algorithm for the set-

ting with externalities, which may be important in potential market design applications. In

particular, the algorithm can also be viewed as a new auction that performs well in the pres-
1Let us stress that even though we derive our results in a general many-to-many matching setting with con-

tracts, the results are new in all special instances of our setting, including many-to-one and one-to-one matching
problems.

2We formulate most of our results in terms of choice functions satisfying the irrelevance of rejected contracts.
A choice function satisfies the irrelevance of rejected contracts if removing a rejected contract does not change
the chosen set conditional on the same matching. When there are no externalities, this condition reduces to the
one used in Aygün and Sönmez (2013). This is a basic rationality axiom: it is satisfied tautologically whenever
agents’ choice can be rationalized through a strict preference ordering.
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ence of externalities.3 Since an agent’s choice depends on others’ matching, we keep track not

only of which contracts are available but also of the reference matchings that agents on each

side use to condition their choice. The construction requires care because after the reference

matching has changed an agent may want to go back to a contract that is already rejected. To

ensure that this does not happen, we construct the initial reference matchings in a preliminary

phase of the algorithm.4 Relatedly, we cannot stop the algorithm as soon as the set of available

contracts converge: we need to continue until the reference matchings converge as well. Our

construction of initial reference matchings ensures that subsequent reference matchings change

in a monotonic way with respect to the “better market conditions” preorder, thus ensuring that

from some point on the reference matchings belong to the same equivalence class. While

these equivalence classes might consist of many matchings, we further show that the algorithm

converges to one of them and never cycles among the members of the same equivalence class.

Our first main result shows that our algorithm always converges to a stable matching when

choice functions satisfy substitutability (Theorem 1), and hence that stable matchings exist.

We focus on the classical short-sighted stability concept in which each agent assumes that

other agents do not react to his or her choice. Our results, however, are applicable to many

other stability concepts including far-sighted ones because we formulate the results in terms

of agents’ choice behavior and not in terms of their preferences. As we discuss in Section

3.1, agents’ choice behavior captures both agents’ preferences and their conjectures about the

reactions of other agents’ to choices. The resultant synthesis of short-sighted and far-sighted

stability is one of the main conceptual contributions of our paper.5

Our second main result is a comparative statics on the strength of externalities and substi-

tutes. Comparing two profiles of choice functions, we say that substitutes are stronger when

agents reject more. In addition, we say that a reference choice function has weaker externalities

than another choice function when the reference choice function reflects better market condi-

tions (when the market conditions are measured by the reference choice function) than the
3See, e.g., Abdulkadiroğlu and Sönmez (2003) and Sönmez and Switzer (2013) for market design applications

of deferred acceptance, and Kelso and Crawford (1982) and Hatfield and Milgrom (2005) for the relationship
between deferred acceptance and ascending auctions.

4The cumulative offer phase of the algorithm builds on the approach of Fleiner (2003) and Hatfield and Mil-
grom (2005). The preliminary phase of the algorithm has no forerunners. It may be omitted if there is an
underlying lattice structure on the set of all matchings; in general, however, such a lattice structure does not exist
and neither do side-optimal matchings.

5While the study of stability in terms of choice behavior is well established (see e.g. Aygün and Sönmez,
2013), we believe that this conceptual point is new. The choice-based approach allows us to also consider agents
whose choice behavior cannot be represented in terms of preferences as long as this choice behavior satisfies the
rationality postulate discussed in footnote 2.
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other choice function. This comparison of the strength of externalities satisfies some natural

properties: for instance, the choice function exhibiting no externalities has weaker externali-

ties than any other choice function. We prove that agents on one side of the market face better

market conditions as their side of the market exhibits stronger substitutes and weaker exter-

nalities and they face worse market conditions if the other side of the market exhibits stronger

substitutes and weaker externalities (Theorem 5).

In addition to these results, we extend the classical theory of matching to the setting with

externalities. In Section 5, we first show that every stable matching is Pareto efficient (The-

orem 3). Then we analyze the existence of side-optimal stable matchings, that is, matchings

that represent the optimal market conditions. A side-optimal stable matching exists under the

additional assumption that there exists a side-optimal matching (Theorem 4). This additional

assumption is satisfied trivially in finite settings without externalities, where the existence of

side-optimal stable matchings was established already by Gale and Shapley (1962).

Furthermore, we study vacancy-chain dynamics. What are the welfare implications of an

agent leaving the market? We show that when agents recontract according to an algorithm akin

to the deferred acceptance algorithm, all agents on the same side face better market conditions

and all agents on the other side face worse market conditions (Theorem 6). In the setting

without externalities and when agents on one side of the market can sign only one contract, the

corresponding results have been proven by Kelso and Crawford (1982) and Crawford (1991).

Similarly, our results generalize those of Blum, Roth, and Rothblum (1997) and Hatfield and

Milgrom (2005), none of whom looked at the setting with externalities.

We also generalize the rural hospitals theorem of Roth (1986), which states that each hospi-

tal gets the same number of doctors in each stable matching in many-to-one matching without

externalities (in Appendix A). Our generalization allows different contracts to have different

weights that may depend on the quantity, price, or quality of the contracts. For this purpose,

we introduce a general law of aggregate demand. An agent’s choice function satisfies the law

of aggregate demand if the weight of contracts chosen from a set conditional on a reference

matching is greater than the weight of contracts chosen from a subset conditional on a match-

ing that has worse market conditions than the reference matching. We show that when choice

functions satisfy the law of aggregate demand in addition to the aforementioned properties,

all stable matchings have the same weight for every agent (Theorem 7). When there are no

externalities, this law of aggregate demand reduces to the monotonicity condition of Fleiner

(2003).
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To the best of our knowledge, our development of comparative statics and results such as

the rural hospitals theorem with externalities have no forerunners in the literature analyzing

externalities in the setting of Gale and Shapley (1962). We thus contribute to the matching

literature by showing how one can incorporate externalities into standard models of matching,

including matching with contracts,6 by offering new insights, and by showing that many of the

insights of the classical literature remain valid in the presence of externalities.7

On the other hand, our existence result contributes to a rich literature analyzing the ex-

istence and nonexistence results in matching with externalities. In an early influential paper,

Sasaki and Toda (1996) showed that stable one-to-one matchings need not exist. Their insight

led the subsequent literature to take one of two routes: to modify the stability concept, or to

impose assumptions on agents’ preferences. Sasaki and Toda’s seminal paper belongs to the

first strand of literature. They focused on a weak stability concept that allows a pair of agents

to block a matching only if they benefit from the block under all possible rematches of the

remaining agents. They show that such weak stable matchings exist.8 In contrast, our paper

uses the standard stability concept of Gale and Shapley (1962) and the literature on match-

ing without externalities.9 We guarantee the existence of stable matchings not by modifying

the stability concept but by imposing assumptions on preferences in line with the standard

approach of restricting attention to substitutable preferences. While we primarily focus on

the standard (short-sighted) stability concept, our results are applicable to many other stability

concepts including Sasaki and Toda’s and other far-sighted concepts (see Section 3.1).

The second strand of the literature analyzes the standard stability concept.10 Prior work in
6The matching with contracts approach has not only been useful as a theoretical tool but also as a practical

tool to design markets. For example, see Sönmez and Switzer (2013); Sönmez (2013); Yenmez (2014). It has also
been extended to the many-to-many matching and more general settings without externalities, see e.g. Ostrovsky
(2008). In particular, Ostrovsky showed that stable matchings exists even in the presence of well-behaved com-
plementarities among inputs and outputs. In a recent work, Alva and Teytelboym (2016) study supply chains in
which inputs can be complements.

7In fact, our main comparative statics result is new even in the setting without externalities as is our synthesis
of classical and far-sighted stability.

8The rich subsequent literature, e.g., Chowdhury (2004); Hafalir (2008); Eriksson, Jansson, and Vetander
(2011); Chen (2013); Gudmundsson and Habis (2013); Salgado-Torres (2011a,b)— maintained the focus on the
existence question while refining Sasaki and Toda’s weak stability concept by varying the degree to which the
rematches of other agents penalize the blocking pair. Bodine-Baron, Lee, Chong, Hassibi, and Wierman (2011)
analyze a related weak stability concept in a setting with peer effects.

9In line with this literature, a set of agents forms a blocking coalition if it benefits them in the absence of
any reaction from the remaining agents. Note that the question of how other agents react to the formation of
a blocking coalition is important whether externalities are present or not. In particular, even in the absence of
externalities, one might entertain an alternative solution concept in which an agent might be unwilling to enter
a blocking coalition if she is concerned that doing so will trigger a chain of events that will lead her to losing a
partner she blocks with.

10We follow this second approach. As discussed above, we also go beyond this second approach by offering a
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this second strand of the literature identified several assumptions under which stable matchings

exist. Particular attention has been devoted to externalities among couples (Dutta and Massó,

1997; Klaus and Klijn, 2005; Kojima, Pathak, and Roth, 2013; Ashlagi, Braverman, and Has-

sidim, 2014), to peer effects among students matched to the same college (Dutta and Massó,

1997; Echenique and Yenmez, 2007; Pycia, 2012; İnal, 2015), and to student assignment prob-

lem with neighbors (Ashlagi and Shi, 2014; Dur and Wiseman, 2015). We are not restricting

our attention to either of these types of externalities.

Our contribution on the existence of stable matchings is closest to the few papers that look

at standard stability in the general matching problem with externalities. Bando (2012; 2014)

studies many-to-one matching allowing externalities in the choice behavior of firms (agents

who match with potentially many agents on the other side) but not of workers; he further as-

sumes that each firm’s choice function depends on the matching of other firms only through the

set of workers hired by other firms, and imposes several other elegant assumptions on firms’

choice behavior. Under these assumptions, he proves the existence of stable matchings and

analyzes the deferred acceptance algorithm. In his setting there is no need to keep track of the

reference matchings in the deferred acceptance algorithm (and hence no need for the prelimi-

nary phase that constructs the initial reference matchings), and his algorithm terminates as soon

as there are no rejections. In another related work, Teytelboym (2012) looks at externalities

among agents in a component of a network and shows that a stable matching exists provided

agents’ preferences are aligned in the sense of Pycia (2012). Finally, Fisher and Hafalir (2016)

consider a setting in which each agent cares only about the level of externality in the overall

economy (such as pollution) and study the existence of stable matchings when there are such

aggregate externalities.11

Our work is also related to the exploration of efficiency in markets with externalities (see,

e.g., Pigou (1932); Chade and Eeckhout (2014); Watson (2014)); while this literature focuses

on efficiency, we focus on stability. Furthermore, two of our examples show the applicability

of our results to the analysis of dynamic matching.12

synthesis of standard and far-sighted approaches to stability.
11Also of note is Uetake and Watanabe (2012) who provide an empirical analysis of firm mergers using a

matching model with externalities, and Mumcu and Saglam (2010) who analyze when all matchings in the non-
empty collection of top matchings are stable. Baccara, Imrohoroglu, Wilson, and Yariv (2012) analyze stable one-
sided allocations with externalities. Hatfield and Kominers (2015) study the existence of competitive equilibria
in a multilateral matching setting with externalities. Leshno (2015), a work in progress, looks at large matching
markets.

12For the analysis of dynamic matching see e.g. Ünver (2010), Pycia (2012), Kurino (2014), and Kotowski
(2015).
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2 Examples

In this section, we provide a few examples to motivate and illustrate our work. As it is well

known, the existence of stable matchings is not guaranteed in the presence of externalities

(see Example 5). However, the examples in this section satisfy the substitutes condition that

guarantees the existence of stable matchings (in addition to a mild axiom). We come back to

these examples after formally defining the substitutes condition.

We first present two motivating examples and then a simpler but more abstract illustrative

example. Additional examples are provided in Section 7. For simplicity, we consider only one

side of the market in our examples. One could model the other side in the same or a different

way because we impose no assumptions relating the choice behavior of agents across sides.

Example 1. [Couples in a Local Labor Market]13 Agents on one side of the market represent

workers and agents on the other side of the market represent firms. Workers are either single

or are members of exogenously married couples. The labor participation decision of a married

man depends on the job of his wife: the better the job she has, the more selective he becomes.

In other words, the outside option of not working becomes more attractive when a man’s wife

has a better job. We assume that there are no externalities for firms (whose preferences satisfy

the standard substitutes condition) or the single workers.

This example can be generalized such that there are externalities for both married men and

women. Furthermore, any two agents can be married, so we do not need a two-sided structure

for the workers.

An important extension of this example encompasses labor markets in which members of

a group—e.g. a minority group or gender group—are more likely to participate in a profession

if other members of this minority participate in it as well.

Our theory also applies to situations in which market participants care about the relative

standings of their partners.

Example 2. [Relative Rankings in Hiring] Agents on one side of the market represent col-

leges and agents on the other side represent academics in a particular field. For each college

i and each academic j the productivity of j at i is denoted by λ(i, j) ≥ 0. For simplicity, as-

sume that no two academics have the same productivity at a college. Now, suppose that each

college hires at most two academics in the field considered, and that it wants to hire at least

one academic and would like to hire another one only if his or her productivity is at least as
13We are grateful to Michael Ostrovsky for suggesting a simple version of this example.
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high as the productivity of all academics in at least half of the other colleges. Formally, the

choice function ci (Xi |µ) of college i is as follows: from choice set Xi, the college chooses the

academic j ∈ Xi with highest productivity λ
(
i, j
)
, and it chooses a second academic j′ ∈ Xi if

and only if λ(i, j′) is greater than or equal to the productivity of all academics in at least half

of the other colleges under matching µ. More generally, we can fix k ∈ [0,1] and assume that

college i chooses a second academic j′ ∈ Xi if and only if λ(i, j′) is greater or equal than the

productivity of academics in at least a fraction k of other colleges.14

Example 3. Suppose that there are two sellers s1 and s2 and two buyers b1 and b2. Seller s1

and buyer b1 can sign contract x1 and seller s1 and buyer b2 can sign contract x2. Seller s2 can

sign contract x3 with buyer b2 only.

Figure 1: Contractual structure in Example 3.

Buyer b1 wants to sign contract x1 regardless of the contracts signed by buyer b2. Buyer

b2 signs contract x2 whenever it is available but signs contract x3 only when contract x2 is not

available depending on whether buyer b1 and seller s1 sign contract x1 or not. More precisely,

cb2 ({x3}|∅) = {x3} and cb2 ({x3}|{x1}) = ∅. Here, the first equation means that buyer b2 chooses

contract x3 when it is the only available contract conditional on contract x1 not being signed

and the second equation means that buyer b2 does not choose contract x3 if contract x1 is

signed.

Choice functions are summarized by the following tables where columns are indexed by

the set of available contracts and rows are indexed by the set of contracts signed by the other

buyer.
14 We can alternatively include this fraction the college whose choice function despite the self-referentiality of

doing so. While we focus our discussion on non-self-referential situations, we can in general allow the choice
function of an agent to depend on this agent’s choice. Note that the colleges do not need to know the productivity
of all academics; for instance, in the base version of the example a college’s choice function is well-defined as
soon as they know the median college productivity.
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{x1} ∅
cb1 (·|{x2, x3}) {x1} ∅

cb1 (·|{x2}) {x1} ∅
cb1 (·|{x3}) {x1} ∅

cb1 (·|∅) {x1} ∅

{x2, x3} {x2} {x3} ∅
cb2 (·|{x1}) {x2} {x2} ∅ ∅

cb2 (·|∅) {x2} {x2} {x3} ∅

Table 1: Buyers’ choice functions in Example 3.

3 Model

There is a finite set of agents I partitioned into buyers, B, and sellers, S, B ∪S = I. Agent

i’s type is denoted as θ(i) ∈ {b, s}. With a slight abuse of notation, θ also denotes one side of

the market, so θ ∈ {b, s}. If θ is a type, then −θ is the other type, that is, −b ≡ s and −s ≡ b.

Agents interact with each other bilaterally through contracts. Each contract x specifies a buyer

b (x), a seller s (x), and terms, which may include prices, salaries and fringe benefits. There

exists a finite set of contracts X. For any X ⊆ X, Xi denotes the maximal set of contracts in

X involving agent i, that is Xi ≡ {x ∈ X : i ∈ {b(x), s(x)}}. Similarly, X−i denotes the maximal

set of contracts not involving agent i, that is, X−i ≡ X \ Xi. We refer to all sets of contracts as

matchings. We embed any quota constraints in agents’ choice behavior. For instance, we model

one-to-one matching markets by assuming that each agent chooses at most one contract from

any choice set. Thus, examples of our setting include standard one-to-one and many-to-one

matching problems with and without transfers.15

Each agent i has a choice function ci, where ci
(
Xi |µ−i

)
is the set of contracts that i chooses

from Xi given that µ−i is the set of contracts signed by the other agents on the same side.16

We expand the domain of the choice function so that ci
(
X |µ) = ci

(
Xi |µ−i

)
. Let ri

(
X |µ) ≡

Xi \ ci
(
X |µ) be the set of contracts rejected by agent i from Xi given matching µ. Similarly

define Cθ
(
X |µ) ≡ ∪i∈θci

(
X |µ) and Rθ

(
X |µ) ≡ ∪i∈θri

(
X |µ) to be the set of contracts chosen

and rejected from set X by side θ given matching µ, respectively. Note that for any X, µ ⊆ X
and θ, Cθ

(
X |µ) and Rθ

(
X |µ) form a partition of X since every contract involves exactly one

agent from each side of the market. A matching problem is a tuple (B,S,X,Cb,Cs).
15Without affecting any of the results, we could alternatively model one-to-one matching and other matching

environments with quota constraints by assuming that only some sets of contracts are feasible matchings. This
alternative route is straightforward if agents condition their choice behavior on any sets of contracts rather than on
feasible matchings. As is usual in models of matching with contracts, in applications with transfers, we assume
that there is a lowest monetary unit.

16We could allow choice functions ci that depend not only on Xi and µ−i but also on µi (that is the set of con-
tracts signed by i) with no change in our proofs. See footnote 14 for an example of when such self-referentiality
is natural.
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Matching µ is individually rational for agent i if ci (µ|µ) = µi. Less formally, given the

contracts of other agents on the same side, agent i wants to keep all of her contracts. A buyer

i and seller j form a blocking pair for matching µ if there exists a contract x ∈ Xi ∩Xj such

that x ! µ and x ∈ ci (µ∪ {x} |µ) ∩ cj (µ∪ {x} |µ). In words, a pair can block a matching if

they can sign a new contract that both of them like. Matching µ is stable if it is individually

rational for all agents and there are no blocking pairs. This stability concept is identical to

pairwise stability studied in settings without externalities (Roth and Sotomayor, 1990). As in

the standard settings without externalities, stability defined in terms of individual and pairwise

blocking is equivalent to group stability when choice rules are substitutable; see Appendix B.

Defining stability in terms of agents’ choices rather than preferences allows us to be agnostic

whether blocking agents expect no further reaction to their blocking, as in canonical stability

concepts, or whether blocking agents have more complex expectations about the consequences

of them blocking; see Section 3.1.

We illustrate this stability notion using Example 3. Suppose that there are no externalities

for sellers and that they choose all available contracts, that is, Cs (X |µ) = X for any set of con-

tracts X and µ. In this example, Y = {x1, x2} is a stable matching. First of all, it is individually

rational: buyer b1 always wants to keep contract x1, buyer b2 also wants to sign contract x2,

and, likewise, seller s1 wants to keep both contracts. Furthermore, there are no blocking pairs.

The only potential blocking pair is seller s2 and buyer b2 with contract x3. But buyer b2 does

not want to sign contract x3 given contract x1, i.e., x3 ! cb2 (Y ∪ {x3}|Y ). Therefore, Y is a

stable set.

3.1 Standard and Far-Sighted Stability

We take choice functions as primitives of our model. This approach allows us to offer a unified

theory of stability that does not depend on blocking agents’ hypothesis on how other agents

react.17 In general, when agents have preferences over matchings (sets of contracts) then these

preferences and agents’ predictions of how others will react to the changes in a matching

allows us to construct the choice functions. In particular, while we focus on standard stability

in which agents assume that their choice does not trigger chains of reactions by others, the

general choice formulation we study implies that our results are equally applicable to theories

of far-sighted stability. In the rest of the discussion, we give two simple examples of how
17This approach has many other benefits (Chambers and Yenmez, 2013) and it has been used in a matching

context before (Fleiner, 2003; Alkan and Gale, 2003; Hatfield and Milgrom, 2005; Aygün and Sönmez, 2013).
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agents’ preferences over matchings translate to their choice behavior.

As a preparation, let us note that when there are externalities, preferences range not only

over the sets of contracts that list agents as a buyer or seller but over all contracts. In this case,

the alternative approach works as follows. Denote agent i’s preference by !i (and the strict part

by ≻i). We assume that !i is strict if the matching for the rest of the agents is fixed, that is, if

X−i ⊆ X−i is a set of contracts that do not have agent i as a buyer or seller, Xi,X ′i ⊆ Xi such that

Xi " X ′i , then either Xi ∪ X−i ≻i X ′i ∪ X−i or X ′i ∪ X−i ≻i Xi ∪ X−i. This assumption guarantees

that agent i’s choice function, which we construct below, is well defined. In the special case

when there are no externalities, each agent’s preference depends only on the set of contracts

that she signs, i.e., for any Xi,X ′i ⊆ Xi and X−i ⊆ X−i, we have Xi ∪ X−i !i X ′i ∪ X−i ⇐⇒
Xi ∪X−i !i X ′i ∪X−i .

Example: Choice functions without prediction. We construct the choice of agent i given

µ from any set X , ci
(
X |µ) ⊆ Xi, as follows:

ci
(
X |µ) ∪ µ−i !i X ′i ∪ µ−i for every X ′i ⊆ Xi .

This is the choice behavior we assume in Example 5 of Section 4.4 and in Example 6 of Section

5.18

Example: Choice functions with prediction in one-to-one matching. For simplicity, we

specify the choice behavior for the special case of our model in which each agent signs at most

one contract. This is the one-to-one matching problem. Let F
({x}; µ) be the set of contracts

in matching µ that have to be removed for feasibility when contract x is added to matching µ.

These are the contracts signed by the buyer and seller associated with contract x in matching

µ. More formally,

F
({x}; µ) ≡ µb(x) ∪ µs(x) .

In particular, if x is the empty contract, then F
({x}; µ) ≡ ∅. The choice of agent i from a set X

given µ, ci
(
X |µ) ⊆ Xi, is then defined as follows:

ci
(
X |µ) ∪ (µ−i \F

(
ci
(
X |µ) ; µ)) !i X ′i ∪

(
µ−i \F

(
X ′i ; µ
))

for every X ′i ⊆ Xi,
!!!X ′i !!! ≤ 1.

This choice behavior is implicit in many studies including Bando (2012; 2014). We can
18It is also consistent with the choice function constructions in Section 2. One could easily generalize this

approach as follows. For each µ−i , let there be a strict preference relation !µ−i
i of agent i. The choice function

can be constructed as: ci (X |µ)∪ µ−i !µ−i
i X ′i ∪ µ−i for every X ′i ⊆ Xi .

11



similarly construct choice functions for many-to-one matching markets or markets with feasi-

bility constraints by appropriately changing the definition of F ({x}; µ). In general, any deter-

ministic theory of how agents react to the matching of an agent allows the agent to compare

the resulting matchings and thus can be easily incorporated in our model.19

Our general approach with choice functions also sheds more light into the previous liter-

ature. Consider the case of pessimistic agents in Sasaki and Toda (1996): A blocking agent

assumes that the rest of the agents are going to react so that the worst matching is going to

realize afterwards. We can incorporate this pessimistic prediction about the future into the

choice functions of agents and use the stability notion that we use above. In this case, an

agent’s choice function depends only on the set of available contracts and not on the reference

matching. As a result, even though preferences may exhibit externalities choice functions do

not. Hence, the existence result of Sasaki and Toda (1996) in case of pessimistic agents can

be established by the classical existence result for the marriage problem of Gale and Shapley

(1962) using our approach.

Our results and analysis remain the same regardless of how choice functions are constructed

from agents’ preferences. Furthermore, we allow for more general choice behavior including

non-rationalizable ones.

3.2 Properties of Choice Functions

To guarantee the existence of stable matchings and mechanisms with desirable properties, we

impose more structure on the choice functions. Let us first define the auxiliary concept of

consistency.20

19In analyzing far-sighted stability based on such deterministic theories, we may need to take care of the
possibility that two choices might lead to the same outcome. In such cases, the preferences over final outcomes
need to be supplemented with a tie-breaking procedure to determine choice behavior. Such indifference situations
never arise in the constructions 1 and 2 above. For an example of a theory of far-sighted stability based on
deterministic assumptions on agents’ reactions see, e.g., Acemoglu, Egorov, and Sonin (2012). Theories of
far-sighted stability that are not directly based on such deterministic assumptions are harder to map into our
framework; see, e.g., Konishi and Ünver (2007) and Ray and Vohra (2015).

20In our context, a binary relation ≽̃θ on domain Aθ is a set of ordered pairs of elements from Aθ . It is
reflexive if for any µ ∈ Aθ , µ≽̃θ µ. It is transitive, if µ1≽̃θ µ2 and µ2≽̃θ µ3 imply µ1≽̃θ µ3. A reflexive and
transitive binary relation is called a preorder. In defining our conditions on choice, we set the domain of the
preorder to beAθ = 2X . Alternatively, we can restrict attention to any smaller domain that contains ∅ and satisfies
Cθ (X |µ) ∈Aθ whenever X ⊆ X and µ ∈Aθ . The minimal such domain isAθ ≡ ∪

t=0,1, ...
Aθ

t whereAθ
0 ≡ {∅} and

Aθ
t for t ≥ 1 are defined recursivelyAθ

t ≡ {Cθ (X |µ) : X ⊆ X, µ ∈Aθ
t−1}∪Aθ

t−1. Since there exists a finite number
of contracts, Aθ is well defined; it is the set of all matchings that can be reached from the empty set by applying
the choice function Cθ .
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Definition 1. A preorder ≽̃θ is consistent with the side choice function Cθ if for any X,X ′, µ, µ′ ⊆
X,

X ′ ⊇ X & µ′≽̃θ µ =⇒ Cθ
(
X ′|µ′) ≽̃θCθ (X |µ) .

To define our conditions, we consider consistent preorders. A consistent preorder ≽̃θ1 is

minimal if there does not exist another consistent preorder ≽̃θ2 such that for any µ and µ′,

µ≽̃θ2µ′ implies µ≽̃θ1µ′. The following lemma establishes the existence and uniqueness of the

minimal preorder that is consistent with a side choice function.

Lemma 1. There exists a unique minimal preorder that is consistent with the side choice

function Cθ .

Proof. First of all, the preorder on the set X that includes all possible pairs of matchings

is consistent with the choice function Cθ . Hence, there exists at least one preorder that is

consistent with the choice function Cθ . Now, let us construct a minimal preorder consistent

with Cθ . Suppose that {≽θ1,≽θ2, . . .,≽θk } is the set of all preorders that are consistent with choice

function Cθ . Define the following binary relation: µ′ ≽θ µ if and only if µ′ ≽θj µ for every

j = 1, . . ., k. The binary relation ≽θ is reflexive and transitive, so it is a preorder. In addition,

let X ′ ⊇ X and µ′ ≽θ µ. Then µ′ ≽θj µ for every j = 1, . . ., k. By consistency of ≽θj , we get

Cθ
(
X ′ |µ′) ≽θj Cθ

(
X |µ) for every j = 1, . . ., k. As a result, Cθ

(
X ′ |µ′) ≽θ Cθ

(
X |µ) . Therefore,

≽θ is also consistent with the choice function Cθ . Since the number of preorders is finite,

this argument shows that there exists a unique minimal preorder ≽θ which is consistent with

Cθ . "

We define our conditions using this minimal preorder ≽θ . To simplify exposition, when

µ′ ≽θ µ we say that µ′ has a better market condition than µ for side θ.

Definition 2. Choice function Cθ satisfies substitutability if for any X,X ′, µ, µ′ ⊆ X,

X ′ ⊇ X & µ′ ≽θ µ =⇒ Rθ
(
X ′|µ′) ⊇ Rθ

(
X |µ) .

Equivalently, choice function Cθ satisfies substitutability if there exists a consistent pre-

order ≽ such that for any X,X ′, µ, µ′ ⊆ X,

X ′ ⊇ X & µ′ ≽ µ =⇒ Rθ
(
X ′ |µ′) ⊇ Rθ

(
X |µ) .

Less formally, the choice function of side θ satisfies substitutability if any contract rejected

from a set X given a matching µ is also rejected from a superset of X given a matching µ′
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that has a better market condition than µ. When µ′ = µ or when there are no externalities, a

choice function satisfies substitutability if the corresponding rejection function is monotone,

or equivalently, a contract that is chosen from a larger set is also chosen from a smaller set

including that contract. This special case is standard substitutability; it was introduced by

Kelso and Crawford (1982) for a matching market with transfers.21 Our definition is more

general and incorporates externalities since the choice function of an agent depends on the set

of contracts signed by the rest of the agents.

In substitutability, we condition the choice set and rejection set on matchings; in particular,

we impose that µ′ has a better market condition than µ. This is a novel property. Importantly,

when there are no externalities for side θ, the preorder ≽θ is defined as the revealed preference

for agents on side θ.22 In addition, substitutability reduces to the regular one studied in the

literature when there are no externalities as the conditioning on matchings is no longer impor-

tant. It is also satisfied in the slightly more general setting in which externalities affect agents’

preferences but not their choices (for instance, if the agents’ utility can be additively separated

into utility from one’s own contracts and utility from contracts of other agents’ on the same

side of the market).

Substitutability can be decomposed into two separate conditions. First is the case when µ′ =

µ, which is similar to the standard substitutability: we discuss this in the preceding paragraph.

Second, when X ′ = X , we reject more students conditional on a matching that has a better

market condition. The conjunction of these two special cases are equivalent to substitutability.

As highlighted above, if substitutability is satisfied for a preorder consistent with the choice

function, then it is also satisfied for the minimal preorder ≽θ .23 This will be useful in our

applications as we do not have to find the minimal preorder consistent with the choice function

but just one preorder that is consistent with the choice function. As a result, we can potentially

use many preorders ≽θ for each side θ. One example of such a preorder can be defined as

follows when agents have preferences over sets of contracts: for any matchings µ and µ′,

µ′ ≽θ µ if µ′ ≽i µ for all i ∈ θ (in words, side θ prefers matching µ′ to µ if all agents in θ prefer
21See also Roth (1984), Fleiner (2003), and Hatfield and Milgrom (2005). Note that in the presence of exter-

nalities, our substitutes assumption imposes a preference restriction even on agents who sign at most one contract.
22When there are no externalities Cθ does not depend on the reference matching. In this case, X is revealed

preferred to Y if Cθ (X ∪Y ) = X .
23In early drafts, we required that the preorder satisfies antisymmetry, that is, µ1≽̃θ µ2 and µ2≽̃θ µ1 imply
µ1 = µ2; in other words, we worked with partial order ≽θ . This however made the substitutability notion
stronger, and our results weaker. For example, the preorders that we use in Examples 1 and 3 are not partial
orders, so the argument for existence of stable matchings in these examples relies on defining substitutability with
respect to preorders rather than partial orders.
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µ′ to µ). But we are not restricting our attention to such preorders. In particular, the preorder

might capture some properties of the underlying fundamentals. For instance, if agents contract

over qualities and payments, we might have µ′ ≽θ µ if the profile of qualities in µ′ is higher

than the profile of qualities in µ (irrespective of payments, and hence of agents’ utilities).

In Example 1, µ′ ≽θ µ for workers if and only if the married women have better jobs in µ′

compared to µ.

Next, we introduce a basic axiom for a choice function. Let us stress that this axiom is

tautologically satisfied when the choice behavior is as in Section 3.1 and in our examples.

Definition 3. Choice function Cθ satisfies the irrelevance of rejected contracts if for all

X ′,X, µ ⊆ X, we have

Cθ (X ′|µ) ⊆ X ⊆ X ′ =⇒ Cθ
(
X ′|µ) = Cθ (X |µ).

If choice function Cθ satisfies the irrelevance of rejected contracts, then excluding contracts

that are not chosen does not change the chosen set. This is a basic axiom for choice functions.

It has been studied in the matching with contracts literature by Aygün and Sönmez (2013)

when there are no externalities. They show that, without this condition, substitutability alone

does not guarantee the existence of stable matchings; but these two conditions together imply

the existence. If choice functions are constructed from preferences as in Section 3.1, then the

irrelevance of rejected contracts is automatically satisfied.

By construction, Cθ satisfies the irrelevance of rejected contracts (or substitutability) if and

only if ci satisfies the irrelevance of rejected contracts (or substitutability) for every agent i on

side θ. Therefore, we can impose these two conditions on either agents’ choice functions or

the choice functions for each side of the market.

3.3 Examples Revisited

Now, we illustrate these properties with our examples. We focus on substitutability because it

is straightforward to see that the irrelevance of rejected contracts is satisfied.

Example 1 revisited: Worker choice functions satisfy substitutability for preorder ≽θ such

that µ′ ≽θ µ when each married woman gets a better job in µ′ compared to µ. This preorder

is consistent because as there are more contracts available married women are better off since

their choice functions do not exhibit externalities. The substitutes condition is satisfied because
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a married man becomes weakly more selective whenever his wife gets a weakly better job, so

he rejects more contracts conditional on µ′ compared to µ whenever µ′ ≽θ µ.

Example 2 revisited: College choice functions satisfy substitutability if we define the pre-

order ≽θ so that µ′ ≽θ µ if and only if max j∈µ′(i)λ
(
i, j
)

is weakly higher than max j∈µ(i)λ
(
i, j
)

for all colleges i.24 This preorder is consistent with the choice functions: when more academics

are around then the maximum quality of the academics a college hires goes up (whether or not

the benchmark quality of academics increases). The substitutability condition is then satisfied:

when more academics are around and when the benchmark quality of academics increases,

each college continues to reject the academics it previously rejected.

Example 3 revisited: Using individual buyer choice functions, we can construct a choice

function Cb for the buyer side.

{x1, x2, x3} {x1, x2} {x1, x3} {x2, x3} {x1} {x2} {x3} ∅
Cb(·|{x1, x2, x3}) {x1, x2} {x1, x2} {x1} {x2} {x1} {x2} ∅ ∅

Cb(·|{x1, x2}) {x1, x2} {x1, x2} {x1} {x2} {x1} {x2} ∅ ∅
Cb(·|{x1, x3}) {x1, x2} {x1, x2} {x1} {x2} {x1} {x2} ∅ ∅
Cb(·|{x2, x3}) {x1, x2} {x1, x2} {x1, x3} {x2} {x1} {x2} {x3} ∅

Cb(·|{x1}) {x1, x2} {x1, x2} {x1} {x2} {x1} {x2} ∅ ∅
Cb(·|{x2}) {x1, x2} {x1, x2} {x1, x3} {x2} {x1} {x2} {x3} ∅
Cb(·|{x3}) {x1, x2} {x1, x2} {x1, x3} {x2} {x1} {x2} {x3} ∅

Cb(·|∅) {x1, x2} {x1, x2} {x1, x3} {x2} {x1} {x2} {x3} ∅

Table 2: Buyer-side choice function in Example 3.

We use the following preorder for buyers: {x1, x2} ≽b {x1, x3}, {x1}, {x2} ≽b {x3},∅; {x1, x3} ∼b

{x1}; and {x3} ∼b ∅. This preorder is consistent with Cb: for example, {x1, x2} ≽b {x1}, so we

must have Cb({x1, x3}|{x1, x2}) ≽b Cb({x3}|{x1}), which is true since Cb({x1, x3}|{x1, x2}) =
{x1} ≽b ∅=Cb({x3}|{x1}). Likewise, {x1, x2} ≽b {x2} implies Cb({x1, x3}|{x1, x2}) ≽b Cb({x1, x3}|{x2}).
Again, this holds because Cb({x1, x3}|{x1, x2}) = {x1} ≽b {x1, x3} = Cb({x1, x3}|{x2}). Substi-

tutability is satisfied for this consistent preorder. For example, {x1, x2} ≽b {x1}, as a result,

we must have Rb({x1, x3}|{x1, x2}) ⊇ Rb({x3}|{x1}), which is true since Rb({x1, x3}|{x1, x2}) =
{x3} ⊇ {x3} = Rb({x3}|{x1}). Likewise, {x1, x2} ≽b {x2} implies Rb({x1, x3}|{x1, x2}) ⊇ Rb({x1, x3}|{x2}).
Again, this holds because Rb({x1, x3}|{x1, x2}) = {x3} ⊇ ∅= Rb({x1, x3}|{x2}). Finally, {x3} ∼ ∅
implies Rb(X |{x3}) = Rb(X |∅) for any set of contracts X , which is true.

24When µ (i) is empty, we set the maximum equal to −∞.
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4 Stable Matchings

As in classical matching theory, a key step in proving the existence of stable matchings is an

algorithm akin to the deferred acceptance algorithm.

Our generalization of the deferred acceptance algorithm has two phases. First, we construct

an auxiliary matching µ∗ such that Cs (X|µ∗) ≼s µ∗. Then, we use µ∗ to construct a stable

matching in a way resembling the classic deferred acceptance algorithm of Gale and Shapley

(1962) and, particularly, its extension by Hatfield and Milgrom (2005): we run the algorithm

in rounds, t = 1,2, .... In any round t ≥ 1, we denote by As (t) and Ab(t) the set of contracts that

are available to the buyers and sellers, respectively. Therefore, the set of contracts held at the

beginning of each round is As (t)∩ Ab(t). We also track the reference matchings for each side:

µs (t) is the seller reference matching and µb(t) is the buyer reference matching.25

Phase 1: Construction of an auxiliary matching µ∗ such that µ∗ ≽s Cs (X|µ∗). Set

µ0 ≡ ∅ and define recursively µk ≡ Cs (X|µk−1) for every k ≥ 1. Since the number of contracts

is finite, there exists n and m ≥ n such that µm+1 = µn. We take the minimum m satisfying this

property and set µ∗ = µm.

We establish below that the matching constructed in phase 1 satisfies the property that

µ∗ ≽s Cs (X|µ∗).
Phase 2: Construction of a stable matching. Set As (1) ≡X (all contracts are available to

the buyers), Ab(1) ≡ ∅ (no contracts are available to the sellers), and the reference matchings

are µs (1) = µ∗, and µb(1) = ∅. In each round t = 1,2, . . ., we update these sets and matchings
25The tracking of reference matchings has no counterpart in earlier formulations of the deferred acceptance

algorithms of, among many others, Gale and Shapley (1962), Roth (1984), Adachi (2000), Fleiner (2003),
Echenique and Oviedo (2004), Hatfield and Milgrom (2005), Echenique and Oviedo (2006), Echenique and Yen-
mez (2007), Ostrovsky (2008), Hatfield and Kojima (2010), and Bando (2014). In these papers, there is no need to
track reference matchings and the deferred acceptance algorithm terminates when there are no more rejections and
no new offers. However, in our setting, the lack of rejections and new offers is not sufficient to stop the algorithm
and we need to run it until the reference matchings converge. We run the algorithm in a symmetric way: in each
round agents on both sides respond to the offers and rejections from the previous round. This is formally different
from the standard approach where agents on the proposing side respond to rejections from the earlier round but
the agents on the accepting side respond to offers in the current round. This difference is not substantive: we
could run the deferred acceptance algorithm in the latter manner with straightforward adjustments.
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as follows:

As (t +1) ≡ X \ Rb(Ab(t) |µb(t)),

Ab (t +1) ≡ X \ Rs (As (t) |µs (t)),

µs (t +1) ≡ Cs (As (t) |µs (t)),

µb (t +1) ≡ Cb(Ab(t) |µb(t)).

Thus, the buyers reject some of the contracts offered in Ab (t) given their reference match-

ing µb (t) and the set of contracts available to the sellers after the round is As (t + 1) = X \
Rb(Ab(t) |µb(t)). Likewise, the sellers reject some contracts in As (t) conditional on their

reference matching µs (t) and the set of contracts available to the buyers after the round is

Ab(t + 1) = X \ Rs (As (t) |µs (t)). We also update the reference matchings: at each round, the

sellers’ reference matching is the chosen set of contracts and likewise for the buyers.

We continue updating these sets until round T such that As (T +1) = As (T ), Ab (T +1) =

Ab (T ), µs (T +1) = µs (T ), and µb (T +1) = µb (T ). The outcome of the algorithm is then

As (T )∩ Ab (T ).

The main result of this section establishes that the algorithm terminates at some round T

despite the presence of externalities and, furthermore, it produces a stable matching.

Theorem 1. Suppose that the choice functions satisfy substitutability and the irrelevance of

rejected contracts. Then, the algorithm terminates, its outcome is stable, and

µs (T ) = µb (T ) = As (T )∩ Ab (T ) .

This result implies that stable matchings exist in environments satisfying substitutability

and the irrelevance of rejected contracts, e.g., in the examples of Section 2. Its proof relies on

monotonicity but we need to address two complications. First, the second phase of our deferred

acceptance procedure is monotonic only in some circumstances; it is the role of the first phase

to guarantee monotonicity of the second phase. Second, working with preorders rather than

partial orders implies that we cannot use Tarski’s fixed-point theorem. Instead, we find that

iterative application of phase two of the algorithm leads us to a set of matchings which are

equivalent in the preorder. The relation between sets As (T ), Ab (T ), and reference matchings

µs (T ) and µb (T ) allows us to then conclude that As (T ) ∩ Ab (T ) is a stable matching. We

provide the details of the proof of the theorem in Appendix C.
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In the reminder of this section, we discuss the similarities and differences with the standard

deferred acceptance algorithm, consider an example of how the algorithm runs, and establish

two auxiliary properties of the transformation iteratively performed in the second phase of the

deferred acceptance algorithm.

4.1 An Illustration of the Deferred Acceptance Algorithm

Like the standard deferred acceptance algorithm, in each round of phase 2, substitutability and

the irrelevance of rejected contracts imply that As (t + 1) ⊆ As (t) and Ab (t +1) ⊇ Ab (t), i.e.,

the sellers make more offers to the buyers while more contracts are rejected by the buyers with

each passing round (Lemma 2). As a consequence, the sellers’ reference matching worsens

and the buyers’ reference matching improves. Hence, both of these two sets converges at

some round t; however, the algorithm does not necessarily terminate when As (t + 1) = As (t)

and Ab (t +1) = Ab (t). Indeed, because of externalities, the set of contracts held at such a

round, As (t) ∩ Ab(t), is not necessarily stable. Instead, the algorithm converges only when

As (t + 1) = As (t), Ab (t +1) = Ab (t), µs (t + 1) = µs (t) and µb (t +1) = µb (t). And the set of

contracts held at such a round is stable.

The following example, which is a special case of Example 1, illustrates this point and

shows the steps of the algorithm. This example also illustrates that our algorithm can be viewed

as an ascending auction in the presence of externalities.

Example 4. Suppose there is one employer f (a firm) and two workers w1 and w2. The firm

can sign two types of contracts with different wages: a low wage, L, and a high wage, H .

The contracts are denoted as follows: x1L =
(

f ,w1, L
)
, x1H =

(
f ,w1,H

)
, x2L =

(
f ,w2, L

)
, and

x2H =
(

f ,w2,H
)
. The firm would like to hire as many workers as it can and pay as low wages

as it can. In other words, from any given set of contracts, the firm chooses the contract with

the lowest wage associated for each worker.

Notice that in this simple example all contracts involve firm f , and hence its preferences do

not depend on the reference matching (i.e., there are no externalities for the firm). Furthermore,

assume that worker w1’s preferences do not depend on the reference matching (that is on what

contract worker w2 signs) and worker w1 is willing to work only at the high wage: x1H ≻w1

∅ ≻w1 x1L. Worker w2’s preferences depend on the contract of worker w1 (we may think of

these two workers as a married couple as in Example 1). More precisely, worker w2 is willing

to work at any wage only if worker w1 is not employed: if worker w1 is not employed then

worker w2’s preference ranking is x2H ≻w2 x2L ≻w2 ∅ and if worker w1 is employed then worker
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w2’s ranking is ∅ ≻w2 x2H, x2L. The workers’ choice functions are constructed from these

preferences.

Suppose that the firm plays the role of a single seller and the workers play the roles of

buyers in the algorithm. The first phase of the algorithm yields µ∗ = {x1L, x2L}.26 We then run

the second phase as summarized in the following table.

As (t) Ab(t) µs (t) µb(t) Cs (As (t) |µs (t)) Cb(Ab(t) |µb(t))
t = 1 X ∅ {x1L, x2L} ∅ {x1L, x2L} ∅
t = 2 X {x1L, x2L} {x1L, x2L} ∅ {x1L, x2L} {x2L}
t = 3 {x1H, x2L, x2H } {x1L, x2L} {x1L, x2L} {x2L} {x1H, x2L} {x2L}
t = 4 {x1H, x2L, x2H } {x1L, x1H, x2L} {x1H, x2L} {x2L} {x1H, x2L} {x1H, x2L}
t = 5 {x1H, x2L, x2H } {x1L, x1H, x2L} {x1H, x2L} {x1H, x2L} {x1H, x2L} {x1H }
t = 6 {x1H, x2H } {x1L, x1H, x2L} {x1H, x2L} {x1H } {x1H, x2H } {x1H }
t = 7 {x1H, x2H } X {x1H, x2H } {x1H } {x1H, x2H } {x1H }
t = 8 {x1H } X {x1H, x2H } {x1H } {x1H } {x1H }
t = 9 {x1H } X {x1H } {x1H } {x1H } {x1H }

t = 10 {x1H } X {x1H } {x1H }

Table 3: Steps of the Deferred Acceptance Algorithm.

In the first round, firm f chooses the low wage contract of both workers and the high wage

contracts are rejected. Workers choose and reject from the initial set Ab (1) = ∅. At the end

of this round, As (2) = X and Ab (2) = {x1L, x2L}, and the reference matchings are unchanged.

In the second round, firm f faces the same choice problem while workers are now choosing

from Ab (2) = {x1L, x2L} and thus worker w1 rejects the offered contract x1L, while worker w2

accepts x2L.

The algorithm continues to proceed in this way. Notice that between the fourth and fifth

rounds the sets of contracts available to the buyers and sellers are the same, i.e., Ab (4) = Ab (5)

and As (4) = As (5). In the standard deferred acceptance algorithm, we could stop the algorithm

here and set the outcome to the matching As (4) ∩ Ab (4) = {x1H, x2L}. In our setting, this

matching is not stable as w2 prefers not to work given that w1 is working. And, indeed, our

deferred acceptance does not converge yet as the new reference matching for the workers is

µb (5) = {x1H, x2L} which is different from µb (4) = {x2L}. Given this change of the reference

matching, worker w2 rejects the contract x2L. The algorithm eventually converges at the ninth

round and produces the matching {x1H }, which is a stable matching.
26Since the firm’s preferences do not exhibit externalities, this initial matching does not impact how the algo-

rithm runs. However, the initial matching matters for the worker-proposing version of the algorithm.
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4.2 A Characterization of Stable Matchings via Fixed Points of a Mono-
tone Function

Let us introduce some notation for the proofs of Theorem 1 and the subsequent results. Each

iteration in the second phase of our algorithm can be described as the following transformation

function

f
(
As, Ab, µs, µb

)
≡
(
X\Rb(Ab |µb), X\Rs (As |µs), Cs (As |µs) , Cb(Ab |µb)

)
,

where f is a function from 2X ×2X ×2X ×2X into itself.

Function f has two important properties, monotonicity and stability of its fixed points, that

are captured in the following auxiliary results. Monotonicity does not require the irrelevance

of rejected contracts:

Lemma 2. Suppose that the choice functions satisfy substitutability. Then, function f is mono-

tone increasing with respect to the preorder ⊑ defined as follows:

(As, Ab, µs, µb) ⊑ ( Ãs, Ãb, µ̃s, µ̃b)⇐⇒ As ⊆ Ãs, Ab ⊇ Ãb, µs ≼s µ̃s, µb ≽b µ̃b.

The fixed points of function f correspond to stable matchings even when choice functions

do not satisfy substitutability or the irrelevance of rejected contracts:

Lemma 3. Let
(
As, Ab, µs, µb

)
be a fixed point of function f . Then As ∪ Ab = X and

µs = µb = As ∩ Ab = Cb(Ab |µb) = Cs (As |µs).

The straightforward proofs of these two lemmas are provided in Appendix C.

When choice functions satisfy substitutability and the irrelevance of rejected contracts, a

matching is stable if and only if it can be supported as a fixed point of f .

Theorem 2. Suppose that the choice functions satisfy substitutability and the irrelevance of

rejected contracts. Then a matching µ is stable if and only if there exist sets of contracts

As, Ab ⊆ X such that
(
As, Ab, µ, µ

)
is a fixed point of function f .

The proof is provided in Appendix C.
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4.3 Comments

The proof of Theorem 1 does not rely on Tarski’s fixed point theorem, which is routinely used

in the matching literature (e.g., see Adachi, 2000). In fact, Tarski’s fixed point theorem cannot

be directly applied in our setting because even though f is monotone increasing, the domain

of f does not have to be a (complete) lattice. In addition, there do not have to exist matchings

that are optimal for buyers or sellers. As a result, the standard approach of applying f to the

extreme points to get a monotone sequence that converges to a fixed point fails. Furthermore,

the binary relation ⊑ on the domain of f is not a partial order, which means that even if a

monotone sequence exists it would not necessarily converge to a fixed point as the preorder ⊑
could cycle.

Theorem 1 establishes that stable matchings exist when choice functions satisfy substi-

tutability and the irrelevance of rejected contracts. Both conditions are necessary in the sense

that when only one of them is satisfied there may not be any stable matchings: Example 1 of

Aygün and Sönmez (2013) satisfies substitutability for the revealed preference but there exists

no stable matching (because the irrelevance of rejected contracts fails). In the next example,

the irrelevance of rejected contracts is satisfied but there exists no stable matching.

Example 5. Suppose that there are two buyers b1,b2 and one seller, s1. There is only one

contract associated with every seller-buyer pair. Let the contract between b1 and s1 be x1 and

the contract between b2 and s1 be x2. Since there is only one seller, there are only externalities

for buyers. Agents have the following preferences:

≻b1 : {x1} ≻ ∅ and {x2} ≻ {x1, x2};
≻b2 : {x1, x2} ≻ {x1} and ∅ ≻ {x2};
≻s1 : {x1, x2} ≻ {x1} ≻ {x2} ≻ ∅.

Construct agents’ choice functions from their preferences. As a result, the choice functions

satisfy the irrelevance of rejected contracts. Yet there exists no stable matching. To see this,

first note that ∅ is not a stable matching because (b1, s1) forms a blocking pair with contract x1.

Second, {x1} is not a stable matching because (b2, s1) forms a blocking pair with contract x2.

Third, {x2} is not a stable matching because it is not individually rational for buyer b2. Finally,

{x1, x2} is not a stable matching because it is not individually rational for buyer b1.

There exists no stable matchings because substitutability fails. Recall that the minimal
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unique preorder ≽b exists (Lemma 1). By consistency Cb(x1 |∅) ≽b Cb(∅|∅), so x1 ≽b ∅. A fur-

ther application of consistency gives x2 =Cb(x2 |x1) ≽b Cb(∅|∅) = ∅. Finally, ∅=Cb(x1 |x2) ≽b

Cb(x1 |∅) = x1. Therefore, we get that x1 ∼b ∅. However, substitutability implies that ∅ =
Rb(x2 |x1) = Rb(x2 |∅) = x2, which cannot hold. Thus, substitutability fails in this example.

5 Pareto Efficiency and Side-Optimal Stable Matchings

Two key normative properties in the standard theory of stable matchings is Pareto efficiency of

stable matchings and the existence of side-optimal stable matchings. Pareto efficiency extends

to our setting as follows:

Theorem 3. Suppose that the choice functions satisfy substitutability. If matching µ is stable

then it is Pareto efficient in the following sense: there is no other matching ν " µ such that

ν = ci
(
ν∪ µ|µ) for every agent i.

The argument resembles a similar argument in the no-externalities case. We prove a

stronger result in Appendix B (Proposition 1).

The counterpart of the side-optimal stable matchings in the setting with externalities is

more subtle and it is given by the following result. Before stating this result, we define the

following concepts.

Definition 4. A stable matching µ is θ-optimal if µ ≽θ µ′ for every stable matching µ′, it is

θ-pessimal if µ ≼θ µ′ for every stable matching µ′.

In the standard stable matching theory without externalities, side optimality is measured

with respect to the revealed preference of agents on this side (e.g. Roth, 1984). This standard

result is subsumed.

Theorem 4. Suppose that the choice functions satisfy substitutability, the irrelevance of re-

jected contracts, and, in addition, for side θ there exists a matching µ̄θ such that for any

matching µ, µ̄θ ≽θ µ. Then, there exists a θ-optimal stable matching µ̂, which is also a −θ-
pessimal stable matching.

Proof. Without loss of generality assume that θ = s. For any (As, Ab, µs, µb) ∈ 2X×2X×2X×2X

we have (X,∅, µ̄s,∅) ⊒ (As, Ab, µs, µb). Therefore, (X,∅, µ̄s,∅) ⊒ f (X,∅, µ̄s,∅). By Lemma 2,

function f is monotone increasing, so we can repeatedly apply it to the last inequality to

get f k−1(X,∅, µ̄s,∅) ⊒ f k (X,∅, µ̄s,∅) for every k. Since 2X × 2X × 2X × 2X is a finite set, this
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sequence converges at some point as in the proof of Theorem 1, so there exists k such that

f k−1(X,∅, µ̄s,∅) = f k (X,∅, µ̄s,∅). Therefore, f k−1(X,∅, µ̄s,∅) is a fixed point of f . By Lemma

3 there is
(
Âs, Âb, µ̂, µ̂

)
that is equal to f k−1(X,∅, µ̄s,∅). Theorem 2 tells us that µ̂ is a stable

matching.

We next show that µ̂ is a seller-optimal and buyer-pessimal stable matching. Let µ be

any stable matching. By Theorem 2, there exist As and Ab such that (As, Ab, µ, µ) is a fixed

point of f . Since (X,∅, µ̄s,∅) ⊒ (As, Ab, µ, µ) and f is monotonic increasing, f can be applied

repeatedly while preserving the order. Therefore, f k (X,∅, µ̄s,∅) ⊒ f k (As, Ab, µ, µ) for every

k, which implies
(
Âs, Âb, µ̂, µ̂

)
⊒ (As, Ab, µ, µ). Therefore, µ̂ ≽s µ and µ̂ ≼b µ, so µ̂ is the

seller-optimal and buyer-pessimal stable matching. "

The assumption that there exists a matching µ̄θ such that for any matching µ, µ̄θ ≽θ µ plays

a crucial role in the proof of Theorem 4. It is not innocuous but it is satisfied in all the examples

of Sections 2 and 7. In the absence of externalities, this assumption is automatically satisfied

when ≽θ is defined as µ ≽θ µ′ if and only if for every i ∈ θ, ci (µ(i)∪ µ′(i)) = µ(i) (or, if and

only, if all agents on side θ prefer µ over µ′). Indeed, we can take µ̄ to be the set of contracts

that assigns each agent on side θ his unconstrained best set of contracts.27 Furthermore, for this

preorder ≽θ substitutability and irrelevance of rejected contracts are equivalent to the standard

ones without externalities. Thus, Theorem 4 subsumes the standard insight that, in the absence

of externalities, there exists a θ-optimal stable matching with respect to ≽θ if preferences

satisfy substitutability and the irrelevance of rejected contracts. This matching is also (−θ)-
pessimal.

Furthermore, our assumption on µ̄ is equivalent to the following: for any two matchings

µ and µ′, there exists another matching µ̃ such that µ̃ ≽θ µ and µ̃ ≽θ µ′. In fact, in light of

our analysis of the algorithm that we provide above, it is enough to impose this assumption on

matchings µ such that Cθ (X|µ) ≼θ µ.
Before we end the discussion on side-optimal stable matchings, we provide an example

which shows that the assumption that there exists a side-optimal matching is necessary for

Theorem 4.

Example 6. Modify Example 5 with the following preferences:
27Notice that this point remains true regardless of whether all sets of contracts are matchings or only some sets

of contracts are matchings because of some feasibility constraints as, for instance, in one-to-one matching. This
is so because we allow µ̄ to be any set of contracts.
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≻b1 : ∅ ≻ {x1} and {x1, x2} ≻ {x2};
≻b2 : ∅ ≻ {x2} and {x1, x2} ≻ {x1};
≻s1 : {x1, x2} ≻ {x1} ≻ {x2} ≻ ∅.

Construct agents’ choice functions from their preferences. As a result, the choice functions

satisfy the irrelevance of rejected contracts. Furthermore, the standard substitutability is satis-

fied for the seller choice function. For buyers, consider the preorder ≽b such that ∅ ≽b ∅ and no

other matchings are comparable. This preorder is consistent because conditional on the empty

set both buyers do not choose any contract. In addition, the buyer-side choice function satisfies

substitutability because the buyer-side rejection function is monotone conditional on the empty

set.

There exists no buyer-optimal stable matching in this example because both the empty set

and {x1, x2} are stable matchings which cannot be compared by the preorder ≽b. The reason is

that there exists no buyer-optimal matching µb such that µb ≽b µ for all matchings µ, which is

the additional assumption needed for the existence of side-optimal stable matchings on top of

substitutability and irrelevance of rejected students.

6 Comparative Statics and “Vacancy Chain” Dynamics

In this section, we first present a comparative statics result that goes beyond the classic theory

of stable matchings. Then we look at the welfare implications of an agent retiring from the

market.

6.1 Comparative Statics on Strength of Externalities and Substitutes

How do stable matchings change when externalities and substitutability are strengthened? To

answer this question, we first introduce the notions of having weaker externalities and stronger

substitutability.

Definition 5. Choice function Ĉθ exhibits stronger substitutability than choice function Cθ

if Rθ (X |µ) ⊆ R̂θ (X |µ) for any µ,X ⊆ X.

Strengthening the substitutes means that agents reject more contracts. Equivalently, we

can think of shrinking the choice function so that agents choose only a subset of the previously
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chosen contracts.28 To get a sense of this assumption, consider for instance Example 2 (in

its general, quantile form). In this example, the larger k is the stronger substitutability of the

colleges’ choice function.29

Definition 6. Choice function Ĉθ exhibits weaker externalities than choice function Cθ if

Ĉθ
(
X |µ) ≽̂θCθ (X |µ) for any µ,X ⊆ X.

Here ≽̂θ is a consistent preorder for choice function Ĉθ (not necessarily the unique minimal

one). Note that if choice function Ĉθ exhibits no externalities then it has weaker externalities

than any other choice function when ≽̂θ is the revealed preference for side θ. In the context of

Example 2, the externalities are weaker when the benchmark ratio k is higher. Notice that the

choice function when k = 1 and the choice function when k = 0 exhibit no externalities, and

thus have weaker externalities than the intermediate choice functions.

In the result below, we consider two seller choice functions Cs and Ĉs. Suppose that

preorder ≽s is consistent with Cs and preorder ≽̂s is consistent with Ĉs. Assume that both

choice functions satisfy the irrelevance of rejected contracts and substitutability.

Theorem 5. Suppose that Ĉs exhibits stronger substitutability and weaker externalities than

Cs. Then for any (Cb,Cs)-stable matching µ there exists a (Cb, Ĉs)- stable matching µ∗ such

that µ ≽b µ∗ and µ∗≽̂sµ.

Proof. For any As, Ab, µs, µb ⊆ X, let

f̂
(
As, Ab, µs, µb

)
≡
(
X\Rb(Ab |µb), X\R̂s (As |µs), Ĉs (As |µs) , Cb(Ab |µb)

)
.

Since µ is a (Cb,Cs)-stable matching, there exist As, Ab ⊆ X such that (As, Ab, µ, µ) is a

fixed point of f (Theorem 2). By Lemma 3, Cs (As |µ) = Cb(Ab |µ) = µ. By strong substi-

tutes, X \ R̂s (As |µ) ⊆ X \ Rs (As |µ); by weaker externalities, Ĉs (As |µ) ≽̂sCs (As |µ). Hence,

(As, Ab, µ, µ) = f (As, Ab, µ, µ)⊑̂ f̂ (As, Ab, µ, µ). Since f̂ is monotone f̂ k−1(As, Ab, µ, µ)⊑̂ f̂ k (As, Ab, µ, µ)

for all k ≥ 1. Since the number of contracts is finite, there exists k such that f̂ k−1(As, Ab, µ, µ) is

a fixed point of f̂ as in the proof of Theorem 1. By Lemma 3, f̂ k−1(As, Ab, µ, µ) = ( Âs, Âb, µ∗, µ∗),

and by Theorem 2, µ∗ is a (Cb, Ĉs)-stable matching. By construction, µ∗≽̂sµ and µ ≽b µ∗. "
28In the terminology of Echenique and Yenmez (2015), choice function Cθ is an expansion of choice function

Ĉθ if for any µ,X ⊆ X, Cθ (X |µ) ⊇ Ĉθ (X |µ). This is equivalent to the stronger substitutes comparison above.
Note that the result of this subsection specialized to the setting without externalities does not have a counterpart
in Echenique and Yenmez (2015).

29In Example 8, which is in Section 7, the choice functions satisfy stronger substitutability as an attorney’s
profits from contracts signed by the attorney decrease relative to his profits from working on contracts signed by
other attorneys.
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In the context of Example 2, as colleges raise the hiring benchmark, the quality of aca-

demics hired in stable matchings increases. Whenever the side-optimal and side-pessimal sta-

ble matchings exist, the market conditions are better for buyers in the buyer-optimal ≽̂-stable

matching than in the buyer-optimal ≽-stable matching; and the converse holds for the sellers.

Example 1 Revisited: Let us consider the local labor market of Example 1. There are no

externalities for the firms and their choice functions satisfy substitutability and the irrelevance

of rejected contracts. Initially, some agents are married while some are not. Consider two

workers: woman w and man m who are both single. Since they are single, there are no exter-

nalities for them and they have preferences over acceptable firms. Let Cs denote the choice

function of the workers (so they act as sellers in the previous definitions). Suppose that woman

w and man m get married. Woman w still ranks the firms in the same way. However, as woman

w gets a better firm man m ranks fewer firms in the same order. There are no other changes in

the market. Let Ĉs be the new choice function of the workers.

For the sake of the discussion, we use a slightly different preorder than the one we have

studied in Section 3.3: let µ′≽̂sµ whenever all women have weakly better firms in µ′ than µ.

Like before, it is easy to see that ≽̂s is a consistent preorder and that choice function Ĉs satisfies

substitutability for this preorder. Furthermore, choice function Ĉs exhibits stronger external-

ities than choice function Cs because man m rejects more firms when he gets married and

other workers have the same choice functions. Likewise, choice function Ĉs exhibits weaker

externalities than choice function Cs because married women have the same preferences over

workers under both scenarios. As a result, Theorem 5 implies that when agents get married in

a local labor market firms are worse off (in the revealed preference sense) and all women get

weakly better firms.

When one side of the market faces no externalities, then the preorder ≽θ that ranks µ

above µ∗ whenever all agents on this side prefer µ over µ∗ is consistent with this side’s choice

behavior. Hence, if, say, buyers face no externalities then they would all prefer µ over µ∗. This

gives us the following.

Corollary 1. Suppose that Ĉs does not exhibit any externalities and that Ĉs has stronger

substitutes than Cs. Then for any (Cb,Cs)-stable matching µ there exists a (Cb, Ĉs)- stable

matching µ∗ such that all buyers prefer µ over µ∗.

Remark 1. Both our conditions, stronger substitutability and weaker externalities, can be weak-

ened by assuming that they hold only when Cθ (X |µ) = µ. The weaker assumptions suffice since

in the proof we apply these conditions to Cs and Ĉs only when Cs (As |µ) = µ.
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6.2 Vacancy Chain Dynamics

Let us consider the classic retirement problem in matching. Suppose that agent i ∈ θ retires.

Then all of the contracts that agent i has signed are annulled. Some agents may be affected by

the removal of these contracts. Therefore, agents may want to add new contracts, or they may

want to remove some of the existing contracts. But the addition or removal of a new contract

may also affect the remaining agents in the market, which may lead to other changes in the

set of contracts. We analyze such changes and show that there is a vacancy chain dynamics

(Crawford, 1991; Blum, Roth, and Rothblum, 1997) that leads to a stable matching in which

agents on side θ are better off and agents on side −θ are worse off. Similar vacancy chain

dynamics have been studied in different matching markets without externalities (e.g., Kelso

and Crawford, 1982; Hatfield and Milgrom, 2005). Our construction shows that vacancy chain

dynamics extend to the setting with externalities.

Without loss of generality, we fix the choice functions of agents other than some seller i

while we compare two possible choice functions of seller i, say ci and ĉi, where this agent re-

jects all contracts under ĉi. Let the corresponding rejection functions be ri and r̂i, respectively.

Less formally, the retirement of seller i is interpreted as no offers being accepted by seller i

and so all offers being rejected by her. On the other hand, the rejection set for the buyers is the

same. For any X, µ ⊆ X, Ĉs (X |µ) ≡ ĉi (X |µ)∪ ⋃
j∈s\{i}

cj (X |µ).
We assume that Cs satisfies substitutability and the irrelevance of rejected contracts for

preorder ≽s. In addition, assume that Ĉs satisfies substitutability and the irrelevance of rejected

contracts for preorder ≽̂s. Likewise, Cb satisfies substitutability and the irrelevance of rejected

contracts for preorder ≽b. Notice that in the contexts of our motivating examples, all these

assumptions are satisfied.

To study the vacancy-chain dynamics, we need to modify the function f as in the proof of

Theorem 5. For any As, Ab, µs, µb ⊆ X,

f̂
(
As, Ab, µs, µb

)
≡
(
X\Rb(Ab |µb), X\R̂s (As |µs), Ĉs (As |µs) , Cb(Ab |µb)

)
.

Let (As (0), Ab(0), µs (0), µb(0)) be the initial matching that is stable with seller i present

in the market. After removing seller i from the market, agents start recontracting dynami-

cally. This process can be described through the function f̂ . Let (As (t), Ab(t), µs (t), µb(t)) ≡
f̂ (As (t − 1), Ab(t − 1), µs (t − 1), µb(t − 1)). We call this the vacancy chain dynamics. In our

setting, f̂ is monotonic since we impose the substitutes and irrelevance of rejected contracts
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assumptions both on the original choice function profile and on the profile when agent i rejects

all offers (or, equivalently, has retired).

Theorem 6. Suppose that Ĉs exhibits weaker externalities than Cs. Let (As, Ab) be a (Cs,Cb)-

stable set of contracts with stable matching µ ≡ As ∩ Ab. Then the vacancy chain dynamics

starting at (As, Ab, µ, µ) converges to (A∗s, A∗b, µ
∗, µ∗) where µ∗ is a (Ĉs,Cb)-stable matching

such that µ∗≽̂sµ and µ ≽b µ∗.

The assumption that Ĉs exhibits weaker externalities than Cs is satisfied in Example 2.

Thus, in this example the closure of one of the colleges leads to an increase in the quality of

academics hired by the remaining colleges.

Proof. Since (As, Ab) is a stable set of contracts, (As, Ab, µ, µ) is a fixed point of f (Theorem

2). By Lemma 3, Cs (As |µ) = Cb(Ab |µ) = µ. By definition, X \ R̂s (As |µ) ⊆ X \ Rs (As |µ). By

weaker externalities, we have Ĉs (As |µ) ≽̂sCs (As |µ) = µ. Hence, (As, Ab, µ, µ) = f (As, Ab, µ, µ)⊑̂ f̂ (As, Ab, µ, µ).

Since f̂ is monotone f̂ k−1(As, Ab, µ, µ)⊑̂ f̂ k (As, Ab, µ, µ) for all k ≥ 1. Since the number of con-

tracts is finite, there exists k such that f̂ k−1(As, Ab, µ, µ) is a fixed point of f̂ as in the proof

of Theorem 1. By Lemma 3, f̂ k−1(As, Ab, µ, µ) = ( Âs, Âb, µ∗, µ∗), and by Theorem 2, µ∗ is a

stable matching in the market without seller i. By construction, µ∗≽̂sµ and µ ≽b µ∗. "

7 Additional Examples

In this section, we provide additional examples that satisfy substitutability.

7.1 Dynamic matching

Example 7. [Dynamic Matching] Firms and workers arrive to a two-sided matching market at

times t = 1, . . .,T . Workers who arrive at time t can wait and match at any time t, t+1, . . .,T . At

each time t a unique firm ft arrives and either matches with one of the workers that is available

at this time, or leaves unmatched. Firm ft’s ranking of workers is exogenously fixed but this

firm’s set of acceptable workers depends on the matches of firms f1, . . ., ft−1: the higher firm

f1’s worker in f1’s ranking, the more selective firm ft becomes. If firm f1 hires the same

worker in two matchings, then the higher firm f2’s worker in f2’s ranking, the more selective

firm ft becomes, etc., lexicographically.
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In this example, a consistent preorder for the firms is defined as follows: µ′ ≽θ µ if and only

if for some firm f we have µ′
(

f
) ≻ f µ

(
f
)

and µ′
(

f ′
) ≽ f ′ µ

(
f ′
)

for all firms f ′ matched be-

fore f . This preorder is consistent with the choice functions, and the substitutability condition

is satisfied as choosing out of larger (in inclusion sense) choice set conditional on a matching

higher in this preorder, each firm continues to reject the worker it previously rejected.30

7.2 Sharing

Our theory applies to situations in which agents share profits, for instance because they work

for the same firm, or have some insurance arrangements, or benefit from a public good financed

by taxes on their private income. The following example illustrates a situation in which there

is profit sharing.

Example 8. [Profit Sharing] Agents on one side of the market represent attorneys organized

in law firms. Each attorney can work on up to k ≥ 0 contracts with clients on the other side of

the market; an attorney works on all contracts he or she signs and the attorney can also work on

selected contracts signed by others in the same firm. Each contract allows an arbitrary number

of attorneys to contribute; the profit an attorney makes from a contract does not depend on

how many other attorneys contribute to it.31 Each attorney prioritizes the contracts she works

on, and the profit attorney i earns on a contract depends on whether it is the first, second, etc.

contract in attorney i’s priorities. We assume that each attorney must prioritize the contracts

she signs over other contracts that she works on.

Attorneys choose what contracts to sign and what contracts to work on so as to maximize

their profits: An attorney’s profit is the sum of the profits from all the contracts she works on

whether she signed it or not. We denote by λ (x, i,ℓ) ≥ 0 the profit that accrues to attorney i

from working on contract x that she prioritizes in position ℓ ∈ {1, . . ., k}. For simplicity, let us

also assume that there are no indifferences.This example satisfies our assumptions provided

λ (x, i,1) > λ
(
y, i,ℓ
)

for all contracts x and y as long as attorney i is the signatory of contract

x and ℓ > 1.

Attorney choice functions satisfy substitutability if we define the preorder ≽θ so that µ′ ≽θ

µ if and only if maxx∈µ′(i) λ (x, i,1) ≥ maxx∈µ(i) λ (x, i,1) for all agents i ∈ θ.32 This preorder is

consistent with choice: When more contracts are available, the profitability of the best contract
30We would like to thank Maciej Kotowski for suggesting this example.
31This assumption and some of our other assumptions can be relaxed.
32We use the convention that the maximum over the empty set is −∞.
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signed by each attorney goes up (irrespective of what contracts other attorneys sign). The

substitutability condition holds for each attorney i: When more contracts are available and

when the profitability of the best contract signed by other attorneys (and hence the outside

option of attorney i) increases, the attorney continues to reject the contracts she previously

rejected.

7.3 Interoperability

Our theory also applies to situations in which agents choose basic products with no regard to

the choices of others but choose add-ons in a way that depends on others’ choices of basic

products. For instance, consider buyers who choose between Mac, PC, and Linux computers

(and operating systems) in a way that does not depend on other buyers’ choices and who

take the hardware/operating system choices of others into account when buying productivity

software.

Example 9. [Interoperability and Add-on Contracts] Suppose agents on one side (buyers)

sign two types of contracts with sellers on the other side: for instance, agents might be signing

primary contracts and add-on (or maintenance) contracts. These two classes of contracts are

disjoint.33 In line with the literature on add-on pricing, suppose that agents ignore the add-

on contracts when deciding which primary contracts to sign (Gabaix and Laibson, 2006), and

suppose that each agent signs at most one primary contract and that there are no externalities

among primary contracts.34

We assume that no agent’s choice of add-on contracts depends on the other agents’ choices

of add-on contracts, and we allow a buyer’s choice among add-on contracts to depend on his

and the other agents’ choices of primary contracts in an arbitrary way as long as the buyer

rejects weakly more (in the inclusion sense) add-on contracts out of X conditional on µ than

he would reject out of X ′ conditional on µ′ whenever X ⊇ X ′ and the agent prefers his primary

contracts in µ to those in µ′.

Buyer choice functions satisfy substitutability for the preorder ≽θ such that µ′ ≽θ µ when
33Similar examples can be written for hardware contracts and software contracts, or contracts on inputs and

outputs.
34Formally, we assume that each buyer’s choice among primary contracts does not depend on other agents’

matches nor on the availability of add-on contracts. One reason that the agents ignore add-on contracts when
signing primary contracts might be that the agents do not know which add-on contracts are available when signing
the primary contracts as in Ellison (2005). We can relax the assumption that each agent signs at most one primary
contract and assume instead that each agent’s choice among primary contracts satisfies the standard substitutes
assumption (see the next section).
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each buyer prefers her primary contracts signed under µ′ to those signed under µ. This preorder

is consistent: ≽θ depends only on primary contracts, and each agent prefers to choose from

larger choice sets over choosing from smaller choice sets. It is enough to check substitutability

separately for the primary contracts and the add-on contracts: it holds for the primary contracts

as the choice over them is not affected by externalities, and it holds for the add-on contracts as

we explicitly assumed it.

8 Conclusion

In this paper, we have studied a two-sided matching problem with externalities where each

agent’s choice depends on other agents’ contracts. For such settings, we have developed the

theory of stable matchings by introducing a new substitutability condition when externali-

ties are present. More explicitly, we have studied the existence of stable matchings, Pareto

efficiency of stable matchings, side-optimal stable matchings, vacancy-chain dynamics, the

deferred acceptance algorithm, comparative statics depending on the strength of externalities

and substitutes, and the rural hospitals theorem (which is in Appendix A). Unlike the previ-

ous matching literature, we have not relied on fixed point theorems; instead, we have used

elementary techniques to overcome the difficulties associated with externalities.

We believe that our notion of substitutability will be useful to study other important ques-

tions in matching markets with externalities. For example, the relation between pairwise-

stability stability, group-stability, core, and other stability concepts has been an important ques-

tion in classical matching theory at least since Blair (1988). We analyze the relation between

pairwise and group stability in Appendix B, but many related questions remain open. The

strategy-proofness of deferred acceptance algorithm (for the proposing side) has been another

important question extensively studied since Dubins and Freedman (1981). We think that a

deferred acceptance procedure remains strategy-proof in our setting provided we impose the

Law of Aggregate Demand a la Hatfield and Milgrom (2005); we leave an exploration of this

question for future work. Finally, even though we have studied two-sided markets, we think

that our techniques are applicable to more general markets such as the supply chain networks

of Ostrovsky (2008) where externalities may naturally appear.
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Appendix A: Law of Aggregate Demand and the Rural Hos-
pitals Theorem

We provide a generalization of the law of aggregate demand (Hatfield and Milgrom, 2005) and

size monotonicity (Alkan and Gale, 2003). In markets without externalities, this generalization

is due to Fleiner (2003). For each contract x ∈ X, there is a corresponding weight denoted by

w(x), which is strictly positive. The generalized law of aggregate demand requires that for
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agent i ∈ θ the total weight of contracts chosen from X conditional on µ is weakly smaller than

the total weight of contracts chosen from X ′ conditional on µ′ for any X ′ ⊇ X and µ′ ≽θ µ. For

a set of contracts X ⊆ X, let w(X ) ≡ ∑
x∈X

w(x). We provide a formal definition as follows.

Definition 7. Choice function ci satisfies the law of aggregate demand if i ∈ θ and for any

X ⊆ X ′ and µ ≼θ µ′ then w(ci (X |µ)) ≤ w(ci (X ′|µ′)).

Previous definitions in the matching literature are restricted to the settings without exter-

nalities, and assume that the weight on all contracts are exactly equal (with the only exception

of Fleiner (2003)). Under this assumption, the generalized law of aggregate demand reduces to

for any X ⊆ X ′ and µ ⊆X, |ci (X |µ) | ≤ |ci (X ′|µ) |. In terms of the demand metaphor of Hatfield

and Milgrom (2005), all contracts are traded at price one. In contrast, we allow any prices.

We study how the weight of contracts changes for an agent in different stable matchings.

We show that the weight remains the same regardless of the stable matching. This extends the

rural hospitals theorem of Roth (1986) in two directions: We allow different contracts to have

different weights and also preferences of an agent can depend on contracts signed by others.

Theorem 7. Suppose that choice functions satisfy substitutability, the law of aggregate demand

for a weight function w, and that there exists a matching µ̄θ such that for any µ ∈Mθ , µ̄θ ≽θ µ
for side θ. Then, for any two stable matchings µ and µ′, w(µi) = w(µ′i) for every agent i.

Proof. First let us observe that since all weights are strictly positive, substitutability and the

law of aggregate demand imply the irrelevance of rejected contracts. This is easy to see: Sup-

pose that X ′,X, µ ⊆X are such that ci (X ′i |µ) ⊆ Xi ⊆ X ′i for agent i. Then substitutability implies

that ci (Xi |µ) ⊇ ci (X ′i |µ). Since weights are positive we get w(ci (Xi |µ)) ≥ w(ci (X ′i |µ)). Now,

since Xi ⊆ X ′i , the law of aggregate demand implies that w(ci (Xi |µ)) ≤ w(ci (X ′i |µ)). Conse-

quently, we need to have w(ci (Xi |µ)) = w(ci (X ′i |µ)). Since all weights are strictly positive and

ci (Xi |µ) ⊇ ci (X ′i |µ), we get ci (Xi |µ) = ci (X ′i |µ), the desired conclusion.

Without loss of generality assume that θ = s. Then, by Theorem 4, there exists a stable

matching µ∗, which is seller-optimal and buyer-pessimal simultaneously. We show that for any

stable matching µ, w(µi) = w(µ∗i ). As it is shown in the proof of Theorem 4, f has two fixed

points (A∗s, A∗b, µ∗, µ∗) and (As, Ab, µ, µ) such that (A∗s, A∗b, µ∗, µ∗) ⊒ (As, Ab, µ, µ). Therefore,

A∗s ⊇ As, A∗b ⊆ Ab, µ∗ ≽s µ and µ∗ ≼b µ. Now by the law of aggregate demand for any i ∈ S,

w(ci (A∗s |µ∗)) ≥ w(ci (As |µ)), which is equivalent to w(µ∗i ) ≥ w(µi) since (A∗s, A∗b, µ∗, µ∗)

and (As, Ab, µ, µ) are fixed points of f . When this is summed over all sellers, we get w(µ∗) ≥
w(µ). Similarly, for any i ∈ B, w(ci (A∗b |µ∗)) ≤ w(ci (Ab |µ)), which is equivalent to w(µ∗i ) ≤
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w(µi) since (A∗s, A∗b, µ∗, µ∗) and (As, Ab, µ, µ) are fixed points of f . When summed over all

buyers, this implies w(µ∗) ≤ w(µ). Therefore, w(µ∗) = w(µ), moreover, all of the individual

inequalities must hold as equalities implying that for any agent i, w(µ∗i ) = w(µi). "

Remark 2. The first part of the proof shows that the law of aggregate demand and the substitute

condition imply the irrelevance of rejected contracts, thus extending an analogous result in

Aygün and Sönmez (2013) to the setting with externalities. This part of the proof relies on the

weights being strictly positive; the remainder of the proof does not. In particular, our proof thus

establishes that the analogue of the rural hospitals theorem holds true for any profile of real

weights, not necessarily positive, as long as we assume that that the choice functions satisfy the

irrelevance of rejected contracts. In addition, under the assumptions of the theorem, an agent’s

choice from the same set conditional on two ranked matchings needs to be the same. Indeed,

let i ∈ θ be an agent. Suppose that X, µ, µ′ ⊆ X are such that µ ≼θ µ′. Then, by substitutability,

ci (X |µ) ⊇ ci (X |µ′). But the law of aggregate demand implies that w(ci (X |µ)) ≤ w(ci (X |µ′)).

Since all weights are positive, we get that ci (X |µ) = ci (X |µ′). This argument does not mean

that we cannot have externalities because the choice conditional on two matchings that are not

ranked with respect to ≽θ can still be different.

Appendix B: Group Stability

A set X ⊆ X blocks matching µ if X ! µ and for all i ∈ I we have Xi ⊆ ci (µ∪ X |µ). Less

formally, conditional on matching µ, every agent who is associated with a contract in X wants

to sign all contracts in X associated with her. In this case, X is also called a blocking set for µ.

A matching is group stable if it is individually rational matching and there is no blocking set

of contracts. Without externalities, this stability concept has been used before (see, e.g., Roth,

1984 and Hatfield and Kominers (2016)).

Proposition 1. [Equivalence of Stability and Group Stability] Suppose that choice functions

satisfy substitutability. Then a matching is stable if and only if it is group stable.

See Roth and Sotomayor (1990); Echenique and Oviedo (2006); Hatfield and Kominers

(2016) for earlier developments of this equivalence when there are no externalities. In partic-

ular, Hatfield and Kominers (2016) prove the same result when there are no externalities. The

same proof works in our setting as well. More precisely, the following lemma is enough to

prove the proposition, which does not require the irrelevance of rejected contracts.
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Lemma 4. Suppose X blocks matching µ and choice functions satisfy substitutability. Then

for every x ∈ X \ µ, {x} blocks µ.

Proof. If X is a blocking set, then X ⊆ Cs (µ∪ X |µ)∩Cb(µ∪ X |µ). Take any x ∈ X \ µ. Since

choice function ci satisfies substitutability, we have ri (µ∪ {x}|µ) ⊆ ri (µ∪X |µ) for every agent

i. This implies x ∈ ci (µ∪ {x}|µ) for every i, so x ∈ Cs (µ∪ {x}|µ)∩Cb(µ∪ {x}|µ). Therefore,

{x} is a blocking set for µ. "

Appendix C: Proofs of Theorems 1 and 2

We start with the proofs of the two auxiliary lemmas from Section 4.2. We then first prove

Theorem 2 (without using Theorem 1), and then use Theorem 2 to prove Theorem 1.

8.1 Proof of Lemma 2

Function f is monotonic in ⊑ because for any As ⊆ Ãs, Ab ⊇ Ãb, µs ≼s µ̃s, µb ≽b µ̃b, substi-

tutability implies that

X\Rb(Ab |µb) ⊆ X\Rb( Ãb | µ̃b),

X\Rs (As |µs) ⊇ X\Rs ( Ãs | µ̃s),

and consistency implies that

Cs (As |µs) ≼s Cs ( Ãs | µ̃s),

Cb(Ab |µb) ≽b Cb( Ãb | µ̃b).

Therefore, (As, Ab, µs, µb) ⊑ ( Ãs, Ãb, µ̃s, µ̃b) implies that f (As, Ab, µs, µb) ⊑ f ( Ãs, Ãb, µ̃s, µ̃b).

8.2 Proof of Lemma 3

As ∪ Ab = As ∪ [X\Rs (As |µs))
] ⊇ As ∪ [X \ As] = X, so

As ∪ Ab = X.
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Similarly, As∩Ab = As∩ [X\Rs (As |µs))
]
= As \Rs (As |µs) =Cs (As |µs) , which implies Cs (As |µs) =

As ∩ Ab. Analogously for b, Cb
(
Ab |µb

)
= As ∩ Ab. Finally, µθ = Cθ

(
Aθ |µθ

)
implies

µs = µb = As ∩ Ab = Cb(Ab |µb) = Cs (As |µs) .

8.3 Proof of Theorem 2

First, suppose that
(
As, Ab, µ, µ

)
is a fixed point of function f . Claim 1 below shows that, under

the hypothesis of Theorem 2, µ is a stable matching.

Claim 1. Suppose that choice functions satisfy substitutability and the irrelevance of re-

jected contracts. Then matching µ is stable.

Proof. Suppose for contradiction that µ is not stable. Then there are three possibilities, all

of which we proceed to rule out.

1. Matching µ is not individually rational for some seller j, that is cj (µ|µ) " µ j . Since
(
As, Ab, µ, µ

)
is a fixed point of f , Cs (As |µ) = µ and As ⊇ µ. But substitutability and

cj (µ|µ) " µ j imply that there is a contract x ∈ µ j rejected out of As by agent j, that is

x ! Cs (As |µ) , a contradiction.

2. Matching µ is not individually rational for some buyer i, that is ci (µ|µ) " µi .This is

analogous to the previous case since f treats buyers and sellers symmetrically.

3. There exists a blocking pair with contract x ∈ X \ µ. Since
(
As, Ab, µ, µ

)
is a fixed point

of f , by Lemma 3 As∪ Ab =X. Therefore, without loss of generality, assume that x ∈ Ab.

Since {x} is a blocking set, there exists buyer i such that x ∈ ci (µ∪ {x}|µ) \ µ. Again,

since
(
As, Ab, µ, µ

)
is a fixed point of f , by Lemma 3 Cb(Ab |µ) = µ, which implies that

ci (Ab |µ) = µi. By the irrelevance of rejected contracts, for any set Y such that Ab ⊇Y ⊇ µ,
ci (Y |µ) = µi. In particular, for Y = µ∪ {x}, ci (µ∪ {x}|µ) = µi, which is a contradiction

because x ∈ ci (µ∪ {x}|µ) \ µ.

To finish the proof of the theorem, we need to show that if matching µ is stable then there exist

sets of contracts As, Ab such that
(
As, Ab, µ, µ

)
is a fixed point of f . The following is useful in

our construction of As and Ab.

Claim 2. Suppose that choice functions satisfy substitutability and the irrelevance of re-

jected contracts. Then the function Mθ
(
µ
) ≡ max{X ⊆ X|Cθ (X |µ) = µ}, where the maxi-

mum is with respect to set inclusion, is well defined. Moreover, for any contract x ∈ Mθ
(
µ
)
,

x ∈ Cθ (Mθ
(
µ
) ∪ x |µ).
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Proof. If there are two sets M′ and M′′ such that Cθ
(
M′|µ) = Cθ

(
M′′|µ) = µ, then (by

substitutability)

Cθ
(
M′ ∪M′′|µ) = (

M′ ∪M′′
) \ Rθ

(
M′ ∪M′′|µ) =

[
M′ \ Rθ

(
M′ ∪M′′|µ)

]
∪
[
M′′ \ Rθ

(
M′ ∪M′′|µ)

]
⊆

[
M′ \ Rθ

(
M′ |µ)

]
∪
[
M′′ \ Rθ

(
M′′|µ)

]
= µ.

If Cθ (M′ ∪M′′|µ) was a proper subset of µ, then the irrelevance of rejected contracts would

imply that Cθ (M′|µ) = Cθ (M′′|µ) = Cθ (M′ ∪M′′|µ), which is a contradiction. Therefore,

Mθ (µ) is well defined. Let x ! M = Mθ (µ). If x !Cθ (M∪ x |µ), then Cθ (M∪ x |µ) =Cθ (M |µ)
by the irrelevance of rejected contracts. But this implies Cθ (M ∪ x |µ) = µ, which contradicts

maximality of M . Hence x ∈ Cθ (M ∪ x |µ).
Claim 3. Suppose that the matching µ is stable and the choice functions satisfy substi-

tutability and the irrelevance of rejected contracts. Then there exist sets of contracts As and Ab

such that
(
As, Ab, µ, µ

)
is a fixed point of f .

Proof. By Claim 2, there exists the largest set Mθ
(
µ
) ≡ max{X ⊆ X|Cθ (X |µ) = µ}. Let

As ≡Ms (µ) and Ab ≡X\Rs (As |µ). By definition, Ab =X\Rs (As |µ) and µ=Cs (As |µ). Thus,

we get As ∩ Ab = As ∩ (X \ Rs (As |µ)) = Cs (As |µ) = µ. To finish the proof, we need to show

µ = Cb(Ab |µ) and As = X \ Rb(Ab |µ).
Note that Ab = X \ Rs (As |µ) = (X \ As)∪Cs (As |µ) = (X \ As)∪ µ. In particular, Ab ⊇ µ.

If Cb(Ab |µ) = Y " µ, there are two cases, both of which contradict stability of µ. First, if

Y " µ, then the irrelevance of rejected contracts implies Cb(µ|µ) = Y , implying that µ is not

individually rational for some buyers, contradicting stability. Second, if Y ! µ, then there exists

a y ∈ Y \ µ, and y ∈ Cb(µ∪ {y}|µ) by substitutability since y ∈ Cb(Ab |µ) and Ab ⊇ µ∪ {y}. But

we also have that y ∈ Cs (As ∪ {y}|µ) by Claim 2. Then {y} blocks µ, contradicting stability.

Thus, the only case consistent with stability is Cb(Ab |µ) = µ.
Finally, we show that As = X \ Rb(Ab |µ) = X \ Rb(X \ Rs (As |µ) |µ). Since Cb(Ab |µ) = µ,

then X\Rb(Ab |µ) =X\ (Ab \ µ) =X\ (((X\ As)∪ µ) \ µ) =X\ (X\ As) = As and we have the

result.

8.4 Proof of Theorem 1

First, let us consider the first phase of the algorithm and check that µ∗ ≽s Cs (X|µ∗). By the

irrelevance of rejected contracts, we get Cs (µk |µk−1) = µk for every k ≥ 1. We show that

µk ≽s µk−1 for every k ≥ 1. The proof is by mathematical induction on k. For the base case
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when k = 1, note that X ⊇ ∅ and consistency imply that

µ1 = Cs (X|∅) ≽s Cs (∅|∅) = ∅ = µ0.

For the general case, µk ≽s µk−1 and X ⊇ µk imply that (by consistency)

µk+1 = Cs (X|µk ) ≽s Cs (µk |µk−1) = µk .

Therefore, {µk }k≥1 is a monotone sequence with respect to the preorder ≽s. Since the number

of contracts is finite, there exists n and m ≥ n such that µm+1 = µn; we take the minimum m

satisfying this property and set µ∗ = µm. Then,

Cs (X|µm) = µm+1 = µn ≼s µm

where the monotonicity comparison follows as ≼s is transitive.

It remains to show that the second phase converges and that the resulting matching is stable.

It is easy to see that f (X,∅, µ∗,∅) ⊑ (X,∅, µ∗,∅), since Cs (X|µ∗) ≼s µ∗ by construction and

Cb(∅|∅) = ∅ ≽b ∅ by reflexivity of ≽b. By Lemma 2, f is monotone increasing, so we can

repeatedly apply it to the last inequality to get f k (X,∅, µ∗,∅) ⊑ f k−1(X,∅, µ∗,∅) for every k.

We consider two separate cases. Suppose first that this sequence converges. Therefore, there

exists k such that f k−1(X,∅, µ∗,∅) = f k (X,∅, µ∗,∅). As a result, f k−1(X,∅, µ∗,∅) is a fixed point

of f . Let (A∗s, A∗b, µ∗s, µ∗b) ≡ f k−1(X,∅, µ∗,∅). By Lemma 3, µ∗s = µ∗b = A∗s∩ A∗b and µ∗b is

a stable matching by Theorem 2.

Otherwise, if the sequence does not converge, there exists a subsequence f n(X,∅, µ∗,∅) ⊒
f n+1(X,∅, µ∗,∅) ⊒ . . . ⊒ f m(X,∅, µ∗,∅) ⊒ f m+1(X,∅, µ∗,∅) = f n(X,∅, µ∗,∅) because the num-

ber of contracts is finite. By transitivity of the preorder ⊒ and the previous inequality, we

get f n(X,∅, µ∗,∅) = f m+1(X,∅, µ∗,∅) ⊒ f m(X,∅, µ∗,∅) ⊒ f n(X,∅, µ∗,∅). Let f n(X,∅, µ∗,∅) =
(As

1, A
b
1, µ

s
1, µ

b
1) and f m(X,∅, µ∗,∅) = (As

2, A
b
2, µ

s
2, µ

b
2). By definition of ⊒, we get that As

1 =

As
2, Ab

1 = Ab
2, µs

1 ∼s µs
2, and µb

1 ∼b µb
2. Now, by construction Cs (As

2 |µs
2) = µs

1 and by sub-

stitutability Cs (As
2 |µs

2) = Cs (As
1 |µs

1), which imply that Cs (As
1 |µs

1) = µs
1. Similarly, we get

that Cs (As
1 |µb

1) = µb
1. Furthermore, by substitutability, X\Rb(Ab

2 |µb
2) = X\Rb(Ab

1 |µb
1) and,

by construction, X\Rb(Ab
2 |µb

2) = Ab
1, which imply X\Rb(Ab

1 |µb
1) = Ab

1. Similarly, we get

X\Rs (As
1 |µs

1) = As
1. Therefore, (As

1, A
b
1, µ

s
1, µ

b
1) is a fixed point of f . This shows that the

sequence converges as in the previous paragraph, so there exists a stable matching.
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