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Abstract

We characterize the full class of obviously strategy-proof mechanisms in environ-
ments without transfers as clinch-or-pass games that we call millipede games. Some
millipede games are simple and widely used in practice, while others may be com-
plex, requiring agents to perform lengthy backward induction, and are rarely observed.
We introduce a natural strengthening of obvious strategy-proofness called strong obvi-
ous strategy-proofness, which eliminates these complex millipede games. We use our
definition to characterize the well-known Random Priority mechanism as the unique
mechanism that is efficient, fair, and simple to play, thereby explaining its popularity

in practical applications.

1 Introduction

Consider a group of agents who must come together to make a choice from some set of
potential outcomes that will affect each of them. This can be modeled as having the agents
play a “game”, taking turns choosing from sets of actions (possibly simultaneously), with
the final outcome determined by the decisions made by all of the agents each time they
were called to play. To ensure that the ultimate decision taken satisfies desirable normative
properties (e.g., efficiency), the incentives given to the agents are crucial. The standard route
taken in mechanism design to ensure good incentives is to appeal to the revelation principle

and look for direct mechanisms that are strategy-proof, i.e., mechanisms where agents are
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simply asked to report their private information, and it is always in their interest to do so
truthfully, no matter what the other agents do. However, this is useful only to the extent
the participants understand that a given mechanism is strategy-proof, and indeed, there is
evidence many real-world agents do not tell the truth, even in strategy-proof mechanisms.
In other words, strategy-proof mechanisms, while theoretically appealing, may not actually
be easy for participants to play in practice. What mechanisms, then, are actually “simple to
play”? And further, what are the trade-offs among simplicity and other normatively desirable
properties such as efficiency and fairness? This paper provides answers to these questions.

We begin by constructing the full class of obviously strategy-proof (Li, 2017), or OSP,
mechanisms in general social choice environments without transfers. Social choice problems
without transfers are ubiquitous in the real-world, and examples include refugee resettle-
ment, school choice, organ exchange, public housing allocation, course allocation, and vot-
ing, among others.! We call the class of OSP games in these environments millipede games
(for reasons that will become clear shortly). While some millipede games, such as sequential
dictatorships, are frequently encountered and are indeed simple to play, others are rarely ob-
served in market-design practice, and their strategy-proofness is not necessarily immediately
clear. In particular, some millipede games may still require agents to look far into the future
and to perform potentially complicated backward induction reasoning. Thus, to further de-
lineate the class of mechanism that are simple to play, we introduce a new criterion called
strong obvious strategy-proofness (SOSP). We construct the full class of strongly obviously
strategy-proof games and show that strong obvious strategy-proofness selects the subset of
millipede games that are observed in practice while eliminating the more complex millipede
games that are rarely (if ever) used. Combining SOSP with standard efficiency and fairness
axioms narrows the space of mechanisms down even further to a unique choice, and one that
is commonly observed in practice: Random Priority.

An imperfect-information extensive-form game is obviously strategy-proof if, whenever
an agent is called to play, there is an action such that even the worst possible final outcome
from following the given action is at least as good as the best possible outcome from taking
any other action at the node in question, where the best and worst cases are determined
by fixing the agent’s strategy and considering all possible strategies that could be played by
her opponents in the future. Li (2017) provides both a theoretical behavioral foundation for
OSP games being “simple to play” and experimental evidence that, in certain settings, OSP

mechanisms do indeed lead to higher rates of truth-telling in practice than their counterparts

!See e.g. Roth (2015) and Jones and Teytelboym (2016) for resettlement, Abdulkadiroglu and Sénmez
(2003) for school choice, Roth, Sonmez, and Unver (2004) for transplants, Sénmez and Unver (2010) and
Budish and Cantillon (2012) for course allocation, and Arrow (1963) for voting and social choice.



that are strategy-proof, but not obviously so.?

Obvious strategy-proofness restricts the set of potential games from which a designer
may choose, which raises the question of exactly which games are obviously strategy-proof.
Our first main result, Theorem 1, constructs the full class of OSP mechanisms as the class
of millipede games. In a millipede game, Nature moves first and chooses a deterministic
subgame, after which agents engage in a game of passing and clinching that resembles the
well-studied centipede game (Rosenthal, 1981). To describe this deterministic subgame in
this introduction, for expositional ease, we focus on allocation problems with agents who
demand at most one unit; the argument for more general social choice environments is
similar. An agent is presented with some subset of objects that she can ‘clinch’, or, take
immediately and leave the game; she also may be given the opportunity to ‘pass’, and remain
in the game.® If this agent passes, another agent is presented with an analogous choice.
Agents keep passing among themselves until one of them clinches some object. When an
agent clinches an object, this is her last move and she leaves the game.

The class of millipede games includes many games that are commonly seen in practice,
such as Random Priority and Serial Dictatorships, which are millipede games in which the
agent who moves can always clinch any object that is still available. However, our charac-
terization shows that these are not the only mechanisms that are obviously strategy-proof.
Some millipede games require substantial foresight on the part of the agents, similar to the
foresight required in centipede games. For instance, it is possible to construct a millipede
game such that a player is offered the possibility of clinching his second-choice object, but
not his top choice object, even though it is still available. If the agent passes, he might not
be given the opportunity to clinch any of his top fifty objects in the next one hundred moves.
The obviously dominant strategy requires the agent to pass, even though he may never be
offered his top choice for some plays of the other agents. (We provide an example of such
a game in Figure 2.) Recognizing that passing is obviously dominant requires the agent to
perform lengthy backward induction.

As another illustration of the backward-induction requirements inherent in some obvi-
ously dominant strategies, consider chess. If White can always force a win, then any winning
strategy of White is obviously dominant, yet the strategic choices in chess are far from ob-

vious; indeed, to the best of our knowledge even the question whether White actually has

2Li also shows that OSP games are those that can be implemented under bilateral commitment between
the designer and the agents.

3In general, we may allow this agent to clinch the same object in several ways; while the choice between
them has no impact on the agent’s outcome, it might affect the allocation of others. Additionally, there need
not be a passing action that allows the agent to stay in the game, but if there is, there can be at most one
such action, in order to preserve obvious strategy-proofness.



a winning strategy remains open. Obvious dominance allows for agents who are unable to
contingently reason about their opponents’ actions, but presumes that they do have perfect
foresight about their own future selves. Thus, if White can force a win, then, at each node,
he is able to determine the obviously dominant move by reasoning backwards from all future
nodes at which he is called to play.*

These examples suggest that some obviously dominant strategies may be hard to identify,
which poses the question of what properties of an extensive-form game guarantee that the
game is simple to play. To address this question, we introduce a refinement of obvious
strategy-proofness, which we call strong obuvious strategy-proofness. An extensive-form game
is strongly obviously strategy-proof if, whenever an agent is called to play, there is an action
such that even the worst possible final outcome from that action is at least as good as the best
possible outcome from any other action, where what is possible may depend on all future
actions, including actions by the agent’s future-self. Thus, strongly obviously dominant
strategies are those that are weakly better than all alternative strategies even if the agent is
concerned that she might tremble in the future or has time-inconsistent preferences.’

Indeed, all SOSP games can be implemented without requiring agents to look far into
the future and perform lengthy backwards induction. We show this by proving that strong
obvious strategy-proofness eliminates the complex members of the more general class of
millipede games, and that strongly obviously strategy-proof games take the form of curated
dictatorships. In curated dictatorships, all agents move only once and (with the possible
exception of the penultimate mover) their outcomes do not depend on the choices of agents
who move after them. The optimal play thus relies on the agents’s ability to see at most one
step ahead in the game.®

While most of our focus is on incentives and simplicity, there are other important criteria
when designing a mechanism, such as efficiency and fairness. Our final result shows when
these desiderata are added as necessary requirements, only one mechanism survives: Random
Priority. Random Priority has a long history and is extensively used in a wide variety of
practical allocation problems. School choice, worker assignment, course allocation, and the
allocation of public housing are just a few of many examples, both formal and informal.
Random Priority is well-known to have good efficiency, fairness, and incentive properties.”

However, it has until now remained unknown whether there are other such mechanisms,

4We would like to thank Eduardo Azevedo and Ben Golub for raising this point.

SFor rich explorations of agents with time-inconsistent preferences, see e.g., Laibson (1997), Gul and
Pesendorfer (2001; 2004), Jehiel (1995; 2001); for bounded horizon backward induction see also Ke (2015).

6Tn particular, strongly obviously strategy-proof and Pareto efficient games take the simple form of almost-
sequential dictatorships, studied earlier in a different context by Pycia and Unver (2016).

"For discussion of efficiency and fairness see, e.g., Abdulkadiroglu and Sénmez (1998), Bogomolnaia and
Moulin (2001), and Che and Kojima (2010).



8 Theorem

and if so, what explains the relative popularity of RP over these alternatives.
6 provide answers to these questions by showing that there is no other such mechanism:
a game is strongly obviously strategy-proof, Pareto efficient, and treats agents equally (a
standard, and relatively weak, fairness axiom) if and only if it is Random Priority. This
insight resolves positively the quest to establish Random Priority as the unique mechanism
with good incentive, efficiency, and fairness properties, thereby explaining its popularity in

practical market design settings.

Our results build on the key contributions of Li (2017), who formalized obvious strategy-
proofness and established its desirability as an incentive property by both providing a theo-
retical foundation and experimental evidence that participants play their dominant strategy
more often in obviously strategy-proof mechanisms (e.g., ascending auctions, dynamic Ran-
dom Priority) than in mechanisms that are strategy-proof, but not obviously so (sealed-bid
auctions, static Random Priority).” While Li looks at specific mechanisms in the no-transfer
setting, we characterize the entire class of obviously strategy-proof mechanisms, and provide
an explanation for the popularity of Random Priority over all other mechanisms, results
which have no counterpart in his work. Finally, our analysis of strong obvious strategy-
proofness furthers our understanding of why some extensive forms of a mechanism are
more often encountered in practice, despite being both equivalent according to the stan-
dard Myerson-Riley revelation principle and obviously strategy-proof.

Following up on Li’s work, but preceding ours, Ashlagi and Gonczarowski (2016) show
that stable mechanisms such as Deferred Acceptance are not obviously strategy-proof, ex-
cept in very restrictive environments where Deferred Acceptance simplifies to an obviously
strategy-proof game with a ‘clinch or pass’ structure similar to simple millipede games
(though they do not describe it in these terms). Other related papers include Troyan (2016),
who studies obviously strategy-proof allocation via the popular Top Trading Cycles (TTC)

mechanism, and provides a characterization of the priority structures under which TTC is

8In single-unit demand allocation with at most three agents and three objects, Bogomolnaia and Moulin
(2001) proved that Random Priority is the unique mechanism that is strategy-proof, efficient, and symmetric.
In markets in which each object is represented by many copies, Liu and Pycia (2011) and Pycia (2011) proved
that Random Priority is the asymptotically unique mechanism that is symmetric, asymptotically strategy-
proof, and asymptotically ordinally efficient. While these earlier results looked at either very small or very
large markets, ours is the first characterization that holds for any number of agents and objects.

9Li also shows that the classic top trading cycles (TTC) mechanism of Shapley and Scarf (1974), in which
each agent starts by owning exactly one object, is not obviously strategy-proof. Troyan (2016) expands this
by considering more general ownership structures, and shows that TTC is obviously strategy-proof if and
only if at any time, at most two agents own all of the available objects. Also of note is Loertscher and Marx
(2015) who study environments with transfers and construct a prior-free obviously strategy-proof mechanism
that becomes asymptotically optimal as the number of buyers and sellers grows.



OSP-implementable. Following our work, Arribillaga et al. (2017) characterize the voting
rules that are obviously strategy-proof on the domain of single-peaked preferences and, in an
additional result, in environments with two alternatives. In contrast to our work, they focus
on characterizing social choice functions instead of games.!® Zhang and Levin (2017a; 2017b)
provide decision-theoretic foundations for obvious dominance and explore weaker incentive
concepts.

More generally, this paper adds to our understanding of incentives, efficiency, and fairness
in settings without transfers. In addition to Gibbard (1973, 1977) and Satterthwaite (1975),
and the allocation papers mentioned above, the literature on mechanisms satisfying these
key objectives includes Papai (2000), Ehlers (2002) and Pycia and Unver (2017; 2016) who
characterized efficient and group strategy-proof mechanisms in settings with single-unit de-
mand, and Péapai (2001) and Hatfield (2009) who provided such characterizations for settings
with multi-unit demand.!! Liu and Pycia (2011), Pycia (2011), Morrill (2014), Hakimov and
Kesten (2014), Ehlers and Morrill (2017), and Troyan et al. (2018) characterize mechanisms

that satisfy certain incentive, efficiency, and fairness objectives.

2 Model

Let NV = {i1,...,in} be a set of agents, and X a finite set of outcomes.!? Each agent has a
preference ranking over outcomes, where we write x 77; y to denote that z is weakly preferred
to y. We allow for indifferences, and write © ~; y if  7Z; y and y 7~; x. The domain of
preferences of agent 7 € N is denoted P;, where each P; determines a partition over the set
of outcomes such that, for all x,y € X that belong to the same element of the partition, we
have x ~; y for all ;€ P;. Each preference relation of agent i may then be associated with
the corresponding strict ranking of the elements of the partition. We will generally work
with this strict ranking, denoted >;, and will sometimes refer to >; as an agent’s type.

The main assumption we make on the preference domains is that they are rich, in the

following sense: given a partition, every strict ranking of the elements of the partition is in

00ther papers that follow on our work include: Bade and Gonczarowski (2017), who study obviously
strategy-proof and efficient social choice rules in several environments, and Mackenzie (2017), who introduces
the notion of a “round table mechanism” for OSP implementation and draws parallels with the standard
Myerson-Riley revelation principle for direct mechanisms.

UPycia and Unver (2016) characterized individually strategy-proof and Arrovian efficient mechanisms.
For an analysis of these issues under additional feasibility constraints, see also Dur and Unver (2015).

12The assumption that X is finite simplifies the exposition and it is satisfied in such examples of our
setting as voting and the no-transfer allocation environments listed in the introduction. This assumption
can be relaxed. For instance, our analysis goes through with no substantive changes if we allow infinite X’
endowed with a topology such that agents’ preferences are continuous in this topology and the relevant sets
of outcomes are compact.



P;. This assumption is satisfied for a wide variety of preference structures.’®> Two important
examples are the canonical voting environment (where every agent can strictly rank all
alternatives) and allocating a set of indivisible goods (where each agent cares only about the
set of goods she receives). In the former case, each agent partitions X into |X| singleton
subsets and an agent’s type >=; is a strict preference relation over X'. In the latter case,
an outcome x € X describes the entire allocation to each of the agents. Since agents are
indifferent over how objects she does not receive are assigned to others, each element of agent
i’s partition of X can be identified with her own allocation, and her type >; is then a (strict)
ranking of these allocations. Where this assumption fails is in settings with transfers, in
which it is assumed that each agent always prefers having more money to less.

When dealing with lotteries, we are agnostic as to how agents evaluate them, as long as the
following property holds: an agent prefers lottery p over v if for any outcomes x € supp (u)
and y € supp (v) this agent weakly prefers x over y; the preference between p and v is strict
if, additionally, at least one of the preferences between x € supp () and y € supp (v) is
strict. This mild assumption is satisfied for expected utility agents; it is also satisfied for
agents who prefer y to v as soon as pu first-order stochastically dominates v.

To determine the outcome that will be implemented, the planner designs a game I' for
the agents to play. Formally, we consider imperfect-information, extensive-form games with
perfect recall, which are defined in the standard way: there is a finite collection of partially
ordered histories (sequences of moves), H. At every non-terminal history h € H, one agent is
called to play and has a finite set of actions A(h) from which to choose. We allow for random
moves by Nature. We use the notation w (h) for a realization of Nature’s move at history h
and w 1= (w(h)) {hermature moves at } t0 denote a realization of Nature’s moves throughout the
game at every history at which Nature is called to play. Each terminal history is associated
with an outcome in X, and agents receive payoffs at each terminal history that are consistent
with their preferences over outcomes >;.

We use the notation A" C h to denote that A’ is a subhistory of h (equivalently, h is
a continuation history of h’), and write h C A’ when h C A’ but h # h'. H,;(h) denotes
the set of (strict) subhistories ' C h at which agent i is called to move. When useful, we
sometimes write h’ = (h, a) to denote the history A’ that is reached by starting at history A
and following the action a € A(h).

An information set T of agent i is a set of histories such that for any h, h’ € Z and any
subhistories & C h and &’ C 1/ at which 7 moves at least one of the following two symmetric
conditions obtains: either (i) there is a history h* C h such that h* and A’ are in the same

information set, A(h*) = A(R/), and i makes the same move at h* and 7/, or (ii) there is a

13In Appendix B, we slightly relax this assumption.



history h* C &’ such that h* and h are in the same information set, A(h*) = A(h), and i
makes the same move at 1* and h. We denote by Z (h) the information set containing history
h.** These imperfect information games allow us to incorporate incomplete information in
the standard way in which Nature moves first and determines agents’ types.

A strategy for a player i in game I' is a function S; that specifies an action at each one
of her information sets.!> When we want to refer to the strategies of different types =; of
agent 1, we write S;(>;) for the strategy followed by agent i for whom Nature drew type >;;
in particular, S;(>;)(Z) denotes the action chosen by agent i with type >; at information set
Z. We use Sy (=) = (Si(>:))ien to denote the strategy profile for all of the agents when
the type profile is == (>=;)ien- An extensive-form mechanism, or simply a mechanism,
is an extensive-form game I' together with a profile of strategies Sy. Two extensive-form
mechanisms (I, Sy) and (IV, S\,) are equivalent if for every profile of types =xn= (>;)ien
the resulting distribution over outcomes when agents follow Sy (>=,) in I' is the same as

when agents follow Sy () in I".1

Remark 1. In the sequel we establish several equivalences. Each of them is an equivalence
of two mechanism which also satisfy additional criteria such as obvious strategy-proofness
or strong obvious strategy-proofness. We can thus formally strengthen these results to C-
equivalence defined as follows. A solution concept C(-) maps any game I' into a subset of
strategy profiles C(I'). The interpretation is that the strategy profiles in C(I') are those
profiles that satisfy the solution concept C; for example, if we were concerned with strategy-
proof implementation (C = SP), then SP(I') would be all strategy profiles Sy such that
S;(>) is a weakly dominant strategy for all i and all types >=; in game I". Two extensive-
form mechanisms (I', Syr) and (IV, S\) are C—equivalent if the following two conditions are
satisfied: (i) for every profile of types = = ()i, the resulting distribution over outcomes
when agents play Sy(>xr) in I' is the same as when agents play S\ (>,r) in I and (ii)
Sy (=n) € C(I') and S\ (>=n) € C(I). In other words, two mechanisms are C-equivalent if

they are equivalent and the strategies satisfy the solution concept C in the respective games.

14We will see shortly that it is without loss of generality to assume all information sets are singletons,
and so will be able to drop the Z(h) notation and identify each information set with the unique sequence of
actions (i.e., history) taken to reach it.

15We consider pure strategies, but the analysis can be easily extended to mixed strategies.

16The equivalence concept here is outcome-based, and hence different from the procedural equivalence
concept of Kohlberg and Mertens (1986).



3  Millipede Games

In this section, we begin our analysis of which games are “simple to play” by characterizing
the entire class of games that are obviously strategy-proof. Following Li (2017), given a
game I', a strategy S; obviously dominates another strategy S. for player ¢ if, starting from
any earliest information set Z at which these two strategies diverge,'” the worst possible
payoff to the agent from playing S; is at least as good as the best possible payoff from S,
where the best/worst case outcomes are determined over all possible (S_;,w). A profile of
strategies Sar(-) =(5i (+));en is obviously dominant if for every player i and every type >,
the strategy S; (>;) obviously dominates any other strategy. When there exists a profile of
strategies Syr(-) that is obviously dominant, we say I is obuviously strategy-proof (OSP).

Obvious strategy-proofness is one way of capturing what it means for a mechanism to be
simple to play. Li (2017) provides a theoretical foundation for this intuition by showing that
obviously dominant strategies are those that can be recognized as dominant by cognitively
limited agents who are unable to engage in contingent reasoning.'® Further, he provides
empirical evidence that, for certain mechanisms, participants are more likely to tell the
truth under extensive-form implementations (which are OSP) than under the corresponding
normal form (which are strategy-proof, but not obviously so).!

If obvious strategy-proofness as a solution concept does indeed capture what games are
simple to play, then an important question is to determine precisely which games satisfy
this criterion. Our first main result is to characterize the entire class of obviously strategy-
proof mechanisms as a class of games that we call “millipede games”. Intuitively, a millipede
game is a take-or-pass game similar to a centipede game, but with more players and more
actions (i.e., “legs”) at each node. Figure 1 shows the extensive form of a millipede game for
the special case of object allocation with single-unit demand, where the agents are labeled
1,7, k,... and the objects are labeled w, z,y,.... At the start of the game, the first mover,

agent 7 has three options: he can take x, take y, or pass to agent j.2° If he takes an object,

1"That is, information set Z is on the path of play under both S; and S} and both strategies choose the
same action at all earlier information sets but choose a different action at Z. Li (2017) refers to such an
information set as an earliest point of departure. Note that for two strategies, there will in general be multiple
earliest points of departure.

18See also Zhang and Levin (2017b) who provide further decision-theoretic foundations for obvious
strategy-proofness.

YFor example, people are more likely to tell the truth in the extensive-form of the Random Priority
mechanism than in the corresponding normal form (where they are asked to submit an entire list of preferences
to ‘the mechanism’ ex-ante). From the standpoint of the classical revelation principle, these two mechanisms
should be strategically equivalent.

29Tn the general definition of a millipede game, it will be possible that none of the actions are passing
actions and so all actions are taking actions. The key restriction imposed by obvious strategy-proofness is
that if there is a passing action, there can only be one. A formal definition is given below.



] pass J pass 1

k pass J

Figure 1: An example of a millipede game in the context of object allocation.

he leaves the game and it continues with a new agent. If he passes, then agent j can take
x, take z, or pass back to ¢. If he passes back to i, then i’s possible choices increase from
his previous move (he can now take z). The game continues in this manner until all objects
have been allocated.

While Figure 1 considers an object allocation environment, millipede games can be de-
fined more generally on any preference structure that satisfies our assumptions of Section
2. Recall that each agent’s preference domain P; partitions the outcome space X" into indif-
ference classes. We use the term payoff to refer to the indifference class associated with a
particular element of the partition. We say that a payoff x is possible for agent ¢ at history
h if there is a strategy profile of all the agents (including choices made by Nature) such that
h is on the path of the game and, under this strategy profile, agent i obtains payoff z (i.e.,
the outcome that obtains under the given strategy profile is in the indifference class that
gives her payoff x). For any history h, P; (h) denotes the set of payoffs that are possible for
1 at h. We say agent ¢ has clinched payoft x at history h if agent ¢ receives payoff x at all
terminal histories h D h. At a history h, if, by taking some action a € A(h) an agent never
moves again in the game and receives the same payoff for every terminal h O (h,a), we say
that a is a clinching action. Clinching actions are generalizations of the “taking actions” of
Figure 1 to environments where the outcomes/payoff structure may be different from object
allocation (where more generally, what ¢ is clinching is a particular indifference class for
herself). We denote the set of payoffs that i can clinch at history h by C;(h).2! If an action

2 That is, € C;(h) if there is some action a € A(h) such that i receives payoff « for all terminal h 2 (h, a).
At a terminal history h, no agent is called to move and there are no actions; however, for the purposes of

constructing millipede games below, it will be useful to define C;(h) = {z} for all i, where z is the payoff

10



a € A(h) is not a clinching action, then it is called a passing action.

A millipede game is a finite extensive-form game of perfect information that satisfies
the following properties: Nature either moves once, at the empty history (), or Nature has
no moves. At any history h at which an agent, say i, moves, all but at most one action are
clinching actions; the remaining action (if there is one) is a passing action.?? And finally,

for all 4, all histories h at which ¢ moves and all terminal histories, and all payoffs z, at
least one of the following holds:** (a) 2 € Pi(h); or (b) = ¢ Pi(h) for some h € H;(h); or
(c) x € UﬁeHi(h)Oi(ﬁ); or (d) UﬁeHi(h)Oi(iL) C C;(h). In words, these last conditions require
that, for every payoff x that was at some point possible for i, either: (a) x remains possible
at h, or (b) it was not possible already at an earlier history, or (c¢) it was clinchable at an
earlier history, or (d) each payoff clinchable at an earlier history is clinchable at h.

Conditions (a)-(d) ensure that, if an agent’s top possible outcome is not clinchable at
some history A, then the payoff she ultimately receives must be at least as good as any payoft
she could have clinched at h, which is necessary for passing to be obviously dominant. To
see this, consider an agent whose top payoff is x, and a history h such that (a), (b) and (c)
fail for x. This means at all prior moves, z was possible (by “not (b)”), but not clinchable
(by “not (c¢)”), and so obvious dominance requires i to pass. However, x has disappeared as
a possibility at h (by “not (a)”), and so to ensure that i does not regret her choice to pass at
an earlier history, at h, we must offer her the opportunity to clinch anything she could have
clinched previously, which is condition (d).

Notice that millipede games have a recursive structure: the continuation game that
follows any action is also a millipede game. A simple example of a millipede game is a
deterministic serial dictatorship in which no agent ever passes and there is only one active
agent at each node.?* A more complex example is given in Figure 1.2

Our first main result is to characterize the class of OSP games and mechanisms as the
class of millipede games with greedy strategies. A strategy is called greedy if at each move
at which the agent can clinch the best still-possible outcome for her, the strategy has the

agent clinch this outcome; otherwise, the agent passes.

associated with the unique outcome that obtains at terminal history h.

22There may be several clinching actions associated with the same final payoff.

ZRecall that H;(h) = {h' C h:i moves at h'}.

24 An agent is active at history h of a millipede game if the agent moves at h, or the agent moved prior to
history h and has not yet clinched an outcome.

25The first more complex example of a millipede game we know of is due to Ashlagi and Gonczarowski
(2016). They construct an example of OSP-implementation of deferred acceptance on some restricted prefer-
ence domains. On these restricted domains, DA reduces to a millipede game (though they do not classify the
actions as “passing” or “clinching” actions). Later work by Bade and Gonczarowski (2017) gives an example
of a millipede game that, while shorter, is, in some respects, even more complex than our examples.

11



Theorem 1. Fvery obviously strategy-proof mechanism (I, Sy) is equivalent to a millipede
game with the greedy strateqy. FEvery millipede game with the greedy strategy is obviously
strateqy-proof.

This theorem is applicable in many environments. This includes allocation problems in
which agents care only about the object(s) they receive, in which case, clinching actions
correspond to taking a specified object and leaving the remaining objects to be distributed
amongst the remaining agents. Theorem 1 also applies to standard social choice problems in
which no agent is indifferent between any two outcomes (e.g., voting), in which case clinching
corresponds to determining the final outcome for all agents. In such environments, Theorem
1 implies that each OSP game is equivalent to a game in which either there are only two
outcomes that are possible when the first agent moves (and the first mover can either clinch
any of them, or can clinch one of them or pass to a second agent, who is presented with an
analogous choice, etc.), or the first agent to move can clinch any possible outcome and has
no passing action. The latter case is the standard dictatorship, with a possible restricted set
of possible outcomes, while the former case resembles the almost-sequential dictatorships we

study in the next section.

We now outline the main ideas of the proof of Theorem 1. First, to show that greedy
strategies are obviously dominant in a millipede game, note that if, at some history h, an
agent can clinch her top still-possible outcome, it is clearly obviously dominant to do so.
Harder is to show that if an agent cannot clinch her top still-possible outcome at h, then
passing is obviously dominant. Formally, this follows from conditions (a)-(d) above. The
complete technical details can be found in the appendix.

The more difficult (and interesting) part of Theorem 1 is the first part: for any OSP
game ['; we can find an equivalent millipede game with greedy strategies. The proof in the
appendix breaks the argument down into three main steps.

Step 1. Every OSP game I is equivalent to a perfect information OSP game I in which
Nature moves once, as the first mover.

Intuitively, this follows because if we break any information set with imperfect information
to several different information sets with perfect information, the set of outcomes that are
possible shrinks. For an action a to be obviously dominant, the worst possible outcome from
a must be (weakly) better than the best possible outcome from any other a’. If the set of
possibilities shrinks, then the worst case from a only improves, and the best case from o

worsens; thus, if a was obviously dominant in I', it will remain so in I".26

26That every OSP game is equivalent to an OSP game with perfect information was first pointed out in a
footnote by Ashlagi and Gonczarowski (2016). The same footnote also states that de-randomizing an OSP
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Figure 2: An example of a millipede game.

Step 2. At every history, all actions except for possibly one are clinching actions.

Step 2 allows us to greatly simplify the class of OSP games to “clinch or pass” games.
Indeed, if there were two passing actions a and a’ at some history h, then following each
of a and d there are at least two outcomes that are possible for i. There will always be
a type of agent ¢ for which one of the possibilities following a is at best his second choice,
while one of the possibilities following @’ is his first choice. This implies that ¢ must have
some strategy that can guarantee himself this first-choice outcome in the continuation game
following a’ (by OSP). We can then construct an equivalent game in which 7 is able to clinch
this first-choice outcome already at h. Proceeding in this way, we are able to eliminate one
of the actions a or a'.

Step 3. If agent i passes at a history h, then the payoff she ultimately receives must be
at least as good as any of the payoffs she could have clinched at h.

An agent may follow the passing action if she cannot clinch her favorite possible outcome
today, and so she passes, hoping she will be able to move again in the future and get it then.
To retain obvious strategy-proofness, the game needs to promise agent i that she can never
be made worse off by passing. This implies that one of the conditions (a)-(d) in definition
above must obtain. Combining steps 1-3 imply that any OSP game I' is equivalent to a
millipede game.

Theorem 1 characterizes the entire class of obviously strategy-proof games. We have
already briefly mentioned some familiar dictatorship-like games that fit into this class (e.g.,
Random Priority, also known as Random Serial Dictatorship, in an object allocation envi-
ronment). Another example of a millipede game is given in Figure 2. Here, there are 100

agents {i,j, k1, ..., kog} and 100 objects {01, 02, ...,0100} to be assigned. The game begins

game leads to an OSP game. For completeness, the appendix contains the (straightforward) proofs of these
statements.

13



with agent ¢ being offered the opportunity to clinch oy, or pass to j. Agent j can then either
clinch ogg, in which case the next mover is ks, or pass back to i, and so on. Now, consider the
type of agent i that prefers the objects in the order of their index: 07 =; 03 >=; -+ >=; 0100.
At the very first move of the game, 7 is offered her second-favorite object, 0o, even though
her top choice, oy, is still available. The obviously dominant strategy here requires ¢ to pass.
However, if she passes, she may not be offered the opportunity to clinch her top object(s) for
hundreds of moves. Further, when considering all of the possible moves of the other agents,
if ¢ passes, the game has the potential to go off into thousands of different directions, and
in many of them, she will never be able to clinch better than 0. Thus, while passing is
formally obviously dominant, fully comprehending this still requires the ability to reason far

into the future of the game and perform lengthy backwards induction.

4 Strong Obvious Strategy-Proofness

The upshot of the previous section is that some OSP mechanisms, such as Random Priority,
are indeed quite simple to play; however, the full class of millipede games is much larger, and
contains OSP mechanisms that may be quite complex to actually play. The reason is that
OSP relaxes the assumption that agents fully comprehend how the choices of other agents
will translate into outcomes, but it still presumes that they understand how their own future
actions affect outcomes. Thus, while OSP guarantees that when taking an action, agents do
not have to reason carefully about what their opponents will do, it still may require that
they reason carefully about the continuation game, in particular with regard to their own
“future self”. Here, we introduce a strengthening of obvious dominance that we call strong

obvious dominance.

Definition 1. For an agent ¢ with preferences >;, strategy S; strongly obviously dominates
strategy S; in game I if, starting at any earliest point of departure Z between S; and S5,
the best possible outcome from following S! at Z is weakly worse than the worst possible
outcome from following .S; at Z, where the best and worst cases are determined by considering
any future play by other agents (including Nature) and agent i. If a strategy S; strongly

obviously dominates all other S;, then we say that .S; is strongly obviously dominant.

If a mechanism admits a profile of strongly obviously dominant strategies, we say that
it is strongly obuviously strategy-proof (SOSP). Returning to the examples at the end of the
previous section, Random Priority is SOSP, but the millipede game depicted in Figure 2 is
not. Thus, SOSP mechanisms further delineate the class of games that are simple to play, by

eliminating the more complex millipede games that may require significant forward-looking
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behavior and backward induction.?’

Strong obvious strategy-proofness has several appealing features that capture the idea
of a game being simple to play. As mentioned above, SOSP strengthens OSP by looking at
the worst /best case outcomes for i over all possible future actions that could be taken by i’s
opponents and agent ¢ herself. Thus, a strongly obviously dominant strategy is one that is
weakly better than all alternative strategies even if the agent is concerned that she might
tremble in the future or has time-inconsistent preferences. Also, as we will see shortly, SOSP
games can be implemented so that each agent is called to move at most once.

The next two results formalizes the previous discussion. We first show that strongly ob-
viously dominant strategies are those that are robust to agents’ potential misunderstandings
about the game they are playing.?® Consider an agent who, when she is called to play at some
history, knows the outcomes that are possible from each action, but may not know precisely
how those outcomes depend on the future play. Strongly obviously dominant strategies are
those that remain weakly dominant for such agents. To state the result, we consider perfect-
information games (this restriction is for simplicity only). We say that an extensive-form
game [ is outcome-set equivalent to extensive-form game I" if there is a bijection ¢ between
histories such that for all h, the set of possible outcomes following history A in I' is equivalent

to the set of possible outcomes following history ¢ (h) in I". We then obtain the following.?

Theorem 2. For all ¢ and >;, strategy S; is strongly obviously dominant in I' if and only if

in all outcome-set equivalent games I, the corresponding strategy S. is weakly dominant.

Another implication of the definition of strongly obviously dominant strategies that high-
lights their simplicity is that in any SOSP game, each agent can have at most one history
at which her choice of action is payoff-relevant. Formally, we say a history h at which agent
i moves is payoff-irrelevant for this agent if either (i) there is only one action at h or (ii) ¢
receives the same payoff at all terminal histories & D h; if i moves at h and this history is not
payoff-irrelevant, then it is payoff-relevant for ¢. The definition of the SOSP and richness of

preference domain directly give us the following.

Theorem 3. Along each path of a SOSP game, there is at most one payoff-relevant history

for each agent.

2TRecall also the example of chess discussed in the introduction: if White can force a win, then any winning
strategy of White is obviously dominant, yet the strategic choices in chess seem far from obvious. Chess will
not admit a strongly obviously dominant strategy.

2814 (2017) shows a similar result for OSP. He also shows that OSP mechanisms are precisely the mecha-
nisms that can be implemented with bilateral commitment; this result does not extend to our setting. The
reason is that bilateral commitment presumes that agents are perfectly forward looking and do not make
errors in single-agent games, and SOSP relaxes this assumption.

29We note also that this result continues to hold even if our richness assumption on preferences is violated.
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The payoff-relevant history (if it exists) is the first history at which an agent chooses
from among two or more actions. While an agent might be called to act later in the game,
and her choice might influence the continuation game and the payoffs for other agents, it
cannot affect her own payoff.

Just as Theorem 1 did for OSP, we can provide a simple canonical form for all SOSP
mechanisms. Strengthening OSP to SOSP eliminates the complex examples of millipede
games, such as those in Figure 2. We say a game I' is a curated dictatorship if is a perfect-
information game in which Nature moves first (if at all). The agents then move sequentially,
with each agent called to play at most once. The ordering of the agents and the sets of
possible payoffs at each history are determined by Nature’s action and the actions taken
by earlier agents. As long as there are at least three payoffs possible payoffs for an agent
when he is called to move, he can clinch any of the possible payoffs, while at the same time
also selecting a message from a pre-determined set of messages.?® When only two payoffs
are possible for the agent who moves, the agent can be faced with either a choice between
them (including picking an accompanying message), or, he might be given a possibility to
clinch one of these payoffs (and picking an accompanying message) and passing (with no

message).3!

Theorem 4. Every strongly obviously strategy-proof mechanism (I', Syr) is equivalent to a
curated dictatorship with the greedy strategy. FEvery curated dictatorship with the greedy
strateqy is strongly obviously strategy-proof.

That curated dictatorships are SOSP is immediate; the other part of this theorem can
be derived relatively easily from Theorem 1. Since SOSP implies OSP, any SOSP game is
equivalent to a millipede game. Because we are constructing an equivalent game, we can
assume that at no history an agent has exactly one move. Furthermore, given the definition
of a curated dictatorship, it is sufficient to show that pruned millipede games in which there
is a history h at which the acting agent has three or more possible payoffs and a passing

move are not SOSP.3? Consider such a game and let h be any earliest history where the

30As discussed in Section 3, (S)OSP games may present an agent with several different ways to clinch the
same payoff; sending a message is a simple way to encode which of the clinching actions the agent takes.
Fixing a clinched payoff, each possible message may affect the future of the game, e.g., by determining who
the next mover is, though the agent’s own payoff is not affected.

31Notice that at histories with three or more possible payoffs for the moving agent, curated dictatorships
can be interpreted in terms of (personalized) posted prices: the agent is given a menu of choices and can
freely select one of them. In fact, we can partially relax the richness assumption by allowing transfers, and
a posted-price analogue of Theorem 4 would remain true.

32A pruned game is one for which all histories are on the path of play for some profile of types =x. By
the pruning principle of Li (2017), it is without loss of generality to restrict attention to pruned games. Note
also that if at some history h an agent has two possible payoffs and can clinch either of them, then the
passing action (if there is such) would be pruned.
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acting agent ¢ has three or more possible payoffs and a passing action. The fact that A is
the earliest such history implies that h is the first time 7 is called to act; otherwise, she must
have passed at some A’ C h, and, since everything that is possible at A must also be possible
at any earlier /', this contradicts that A is the earliest history that satisfies our requirements.
Since it is the first time 7 is called to move, h is on the path of play for all types of agent i.
Because there can be at most one passing action, at least one payoff must be clinchable for i,
say x, and at least one must not be clinchable at h, say y. Let z # x,y be some third payoff
that is possible at h. To complete the argument, note that agent ¢ of type y »=; x >; 2 >; - - -

has no strongly obviously dominant action at h, and so the game is not SOSP.

5 Random Priority

Thus far, all of our results have been about incentives and what makes a game “simple to
play”. While incentives are undoubtedly important, they are not the only consideration when
designing a mechanism; efficiency and fairness are two other key goals. As an application of
our new definition of SOSP, we can use it, combined with very natural fairness and efficiency
axioms, to characterize the popular Random Priority (RP) mechanism.

While we have informally been using object allocation as a running example for our
previous results, we now make this more concrete. There is a set of agents N and objects O;
each agent is to be assigned exactly one of objects, and we assume |[N| = |O|. In this context,
an “outcome” is an allocation of objects to agents, and the outcome space X is the space
of all such allocations. Agents care only about their own assignment, and are indifferent
between allocations where the assignment of others may vary, but their own assignment is
unchanged. We consider single-unit demand for simplicity and comparison with the prior
literature that often focuses on this case (Abdulkadiroglu and Sénmez, 1998; Bogomolnaia
and Moulin, 2001; Che and Kojima, 2009; Liu and Pycia, 2011), but equivalent results hold
in more general models that lie in the framework laid out in Section 2.

We begin by considering only incentives and efficiency, and characterize SOSP and ef-
ficient mechanisms as the class of almost-sequential dictatorships.®® An almost-sequential
dictatorship is a perfect-information game in which the nature moves first and then the
agents move in turn, with each agent moving at most once. At his move, an agent picks

his objects and sends a message.>* As long as there are at least three objects unallocated,

33Pycia and Unver (2016) use the same name for deterministic mechanisms without messages that belong
to the class we study; they show that these are exactly the deterministic mechanisms which are strategy-proof
and Arrovian efficient with respect to a complete social welfare function. We use the name their introduced
because our class is a natural extension of theirs.

34Recall the discussion of messages in footnote 30.
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the moving agent can choose from all still available objects. When there are two objects
remaining, an agent can be faced with either a choice between them, or, he might be given
a choice between one of these objects for sure or giving the next agent an opportunity to
allocate the remaining two objects among the two of them.

The difference between a serial dictatorship and a sequential dictatorship is that in a serial
dictatorship, the ordering of the agents is fixed after the nature’s move, while in a sequential
dictatorship, the next agent to move may depend on the choices of the earlier agents. The
reason we call the mechanism described above an “almost” sequential dictatorship is because
it works exactly as a sequential dictatorship if there are three or more objects remaining,

with a small modification allowed when only two objects remain.

Theorem 5. Every strongly obviously strategy-proof and Pareto efficient mechanism (I, Sy)
15 equivalent to an almost-sequential dictatorship with the greedy strategy. FEvery almost-
sequential dictatorship with the greedy strategy is strongly obviously strategy-proof and Pareto
efficient.

Almost-sequential dictatorships are SOSP and efficiency, but they are not necessarily
fair. Indeed, consider a simple serial dictatorship with a fixed ordering of the agents (which
is a special case of an almost-sequential dictatorship). Then, the first agent in the ordering,
11, always gets his first choice, while the last agent, iy, always gets whatever remains.

Formally, a mechanism satisfies equal treatment of equals if, whenever two agents have
the same type, they receive the same distribution over payoffs. It is easy to see that the
above serial dictatorship fails this criterion. The natural way to resolve this unfairness is to
order the agents randomly, and allow them to pick in this order, which gives the popular
Random Priority (RP) mechanism. It is simple to check that RP is SOSP, efficient, and
satisfies equal treatment of equals. The next result says that RP is in fact the only such

mechanism.

Theorem 6. FEvery mechanism that is strongly obviously strategy-proof, Pareto efficient, and
satisfies equal treatment of equals is equivalent to Random Priority with greedy strategies.
Furthermore, Random Priority with greedy strategies is strongly obviously strategy-proof,

Pareto efficient, and satisfies equal treatment of equals.

Random Priority succeeds on all three important dimensions: it is simple to play, Pareto
efficient, and fair.>®> However, this is only a partial explanation of its success, as to now, it

has remained unknown whether there exist other such mechanisms, and, if so, what explains

35 At the cost of substantial strengthening the fairness/symmetry axiom, we could relax SOSP to OSP in
Theorem 6.
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the relative popularity of RP over these alternatives.?® Theorem 6 provides an answer to
this question: not only does RP have good efficiency, fairness, and incentive properties, it is
indeed the only mechanism that does so, thus explaining the widespread popularity of RP

in practice.

6 Conclusion

In general social choice environments without transfers, we study the question of what makes
a game “simple to play”. We first characterize the entire class of obviously strategy-proof
games, and show that they take the form of clinch-or-pass games that we call millipede games.
In a millipede game, at each move, an agent is offered (potentially several) outcomes that she
can clinch immediately and leave the game; in addition, she may be offered the opportunity
to pass (and stay in the game). While obviously strategy-proof, some millipede games may
still require extensive foresight and backwards induction, and so may not necessarily be
simple to play for real-world agents. We thus propose a new definition of strong obvious
strategy-proofness. Strongly obviously strategy-proof mechanisms eliminate the need to
perform backwards induction, and thus are simple to play. Indeed, one strongly obviously
dominant strategy-proof mechanism is seen extensively in practice: Random Priority. We
use strong obvious strategy-proofness together with Pareto efficiency and equal treatment
of equals to characterize Random Priority. Thus, our results show that Random Priority is
the unique mechanism that has good efficiency, fairness, and incentive properties, providing

an explanation for its widespread use.

A  Proofs

A.1 Proof of Theorem 1

Before proceeding with the proof of Theorem 1, we first define the concepts of possible,

guaranteeable, and clinchable outcomes/actions more formally.

A.1.1 Definitions

Fix a game I'. Let S = (5;);en denote a strategy profile for the agents, and recall that w

denotes one particular realization of Nature’s moves (i.e., at each h at which nature is called

36Bogomolnaia and Moulin (2001) provide a characterization of RP in the special case of |N/| = 3, but their
result does not extend to larger markets; Liu and Pycia (2011) provide a characterization using asymptotic
versions of standard axioms in replica economies as the market size grows to infinity.
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to play). Define z(h, S,w) € X as the unique final outcome reached when play starts at some
history h and proceeds according to (S, w).

We first discuss the distinction between types of payoffs (possible vs. guaranteeable)
and then the distinction between types of actions (clinching actions vs. passing actions).
Recall that agents may be indifferent between several outcomes. For any outcome x € X,

let [z]; ={y € X : y ~; x} denote the z-indifference class of agent i, and define
Xi(h,S;) = {[x]; : z(h, (S;, S_;),w) € [z]; for some (S_;,w)}

to be the possible indifference classes that may obtain for agent ¢ starting at history A if
she follows strategy 5;. Consider an agent ¢ of type ;. If there exists some S; such that
[z]; € Xi(h,S;), then we then we say that [z]; is possible for ¢ at h. If, further, there exists
some S; such that X;(h,S;) = {[z];}, then we say [z]; is guaranteeable for i at h. Let

Gi(h) = {[x]; : 3S; s.t. Xi(h, S;) = {[z]i}}

be the sets of payoffs that are possible and guaranteeable at h, respectively.®” Note that
Gi(h) C P;(h), and the set P;j(h) \ G;(h) is the set of payoffs that are possible at h, but
are not guaranteeable at h. (In the proof of the theorem below, we will generally drop
the bracket notation [z]; and, when there is no confusion, simply refer to the “payoff z”.
Statements such as “x is a possible payoff at h” or “z € P;(h)” are understood as “some
outcome in the indifference class [z]; is possible at h”.)

Last, we define a distinction between two kinds of actions: clinching actions and passing
actions. Let ¢ be the agent who is to act at a history A. Using our notational convention
that (h,a) denotes the history obtained by starting at h and following action a, the set
Pi((h,a)) is the set of payoffs that would be possible for i if she were to follow action a at
h. If P,((h,a)) = {[z];}, then we say that action a € A(h) clinches payoff = for i. If an
action a clinches x for ¢ and ¢ never moves again following a, we call a a clinching action.
Note that there can be more than one action that clinches the same payoff x for 7, though
different choices may lead to different payoffs for other agents. Any action of an agent that
is not a clinching action is called a passing action.

We let C;(h) denote the set of payoffs that are clinchable for i at h.3® In words, following
a clinching action, i’s outcome is completely determined (modulo indifference classes), and i

is never called on to move again. Last, note that this definition of C;(h) presumes that agent

3TNote that P;(h) and G;(h) are well-defined even if i is not the agent who moves at h.
38That is, C;(h) = {[z]; : 3a € A(h) s.t. Pi((h,a)) = {[z]:}}.
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i is called to play at history h. If h is a terminal history, then no agent is called to play and
there are no actions. However, it will be useful in what follows to define C;(h) = {[z];} for

all i, where z is the unique outcome associated with the terminal history h.

A.1.2 Proof

With the above definitions in hand, we can prove Theorem 1. We start by proving that
millipede games are OSP (Proposition 1), and then prove that every OSP game is equivalent

to a millipede game (Proposition 2).
Proposition 1. Millipede games with greedy strategies are obviously strategy-proof.

Proof. Let I' be a millipede game. Recall that the greedy strategy for any agent 7 is defined
as follows: for any history h at which ¢ movies, if ¢ can clinch her top payoff in P;(h), then
S;(=;)(h) instructs i to follow an action that clinches this payoff; otherwise, i passes at h.%

We now show that it is obviously dominant for all agents to follow a greedy strategy.
Consider some profile of greedy strategies (S;(+));en. For any subset of outcomes X' C X,
define Top(>;, X’) as the best possible payoff in the set X’ according to preferences >;,
e, x € Top(>;, X') if and only if z ; y for all y € X’ (note that we use our standard
convention whereby a payoff x represents the entire indifference class to which = belongs,
and so Top(>;, X') is effectively unique). Then, Top(>;, P;(h)) denotes i’s top payoff among
all payoffs that are possible at history h, and Top(>;, C;(h)) denotes i’s top payoff among
all of his clinchable payoffs at h. It is clear that if Top(>~;, Ci(h)) = Top(>;, Pi(h)), then the
greedy action of clinching the top payoff is obviously dominant at h. What remains to be
shown is if Top(>=;, C;(h)) # Top(>;, P;(h)), then passing is obviously dominant at h.

Assume that there exists a history h that is on the path of play for type >; when she
follows the greedy strategy and T'op(>=;, C;(h)) # Top(>;, P;(h)), yet passing is not obviously
dominant at h; further, let h be any earliest such history for which this is true. To shorten
notation, let zp(h) = Top(>;, P;(h)), xc(h) = Top(>;, Ci(h)), and let xy (h) be the worst
possible outcome from passing (and following the greedy strategy in the future). Since
passing is not obviously dominant, it must be that zw (h) Z; xc(h).

First, note that ' € H;(h) implies zy (h) 7Z; zw (h'). Since passing is obviously dominant
at all b’ € H;(h), we have zw (h') 77; xc(h'), and together, these imply that xyw (h) 7Z; zo(R)
for all A’ € H;(h). At h, since passing is not obviously dominant, we have xc(h) =; xw (h),

39There may be multiple ways for ¢ to clinch the same payoff x at h, and further, x may in principle still
be possible/guaranteeable if i passes at h. Our goal is simply to prove the existence of at least one obviously
dominant strategy for 1.
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and further, there must be some 2/ € P;(h) \ G;(h) such that 2/ =; zc(h) =; zw(h).*°
The above implies that =’ =; xc(h) =; xc(h') for all B € H;(h). Let Xo = {2/ : 2/ €
Pi(h) and 2’ >=; zc(h)}. In words, X, is a set of payoffs that are possible at all ' C h,
and are strictly better than anything that was clinchable at any A’ C h (and therefore have
never been clinchable themselves). Order the elements in X according to >;, and wlog, let

X1 =i Xy =5 =i TM-

Definition. Let A’ be a history where either agent 7 is called to move or A’ is a terminal
history. Payoff 2 becomes impossible for i at 1’ if: (i) z € P;(h”) for all h” € H;(h’) and
(i) o ¢ PA().

In other words, the history A’ at which a payoff becomes impossible is the earliest history
at which ¢ moves and where = “disappears” as a possible outcome for her.

Consider a path of play starting from h and ending in a terminal history h at which
type >=; of agent i receives his worst case outcome zy (h). For every x,, € Xy, let hy,
denote the history on this path at which z,, becomes impossible for ¢. Note that because
i is ultimately receiving payoff xy (h), such a history h,, exists for all x,, € Xo.1* Let h =
max{hy, he, ..., ha} (ordered by C); in words, h is the earliest history at which everything
in Xy is no longer possible. Further, let iL_m =max{hy,..., 1}, i€, il_m is the earliest
history at which all payoffs strictly preferred to z,, are no longer possible.

Claim 1. For all z,, € X, and all ' C h, we have x,,, & C;(h').

Proof. First, note that z,, ¢ C;(h') for any A’ C h by construction. We will show that
Ty & Ci(h) at any h D B’ D h as well. Start by considering m = 1, and assume z; € C;(h')
for some h O h' D h. By definition, z; = Top(>=;, P;(h)); since b’ D h implies that P;(h') C
P;(h), we have that o1 = Top(>=;, P;(h')) as well. Since x; € C;(h’) by supposition, greedy
strategies direct 7 to clinch zy, which contradicts that she receives xyy(h).4?

Now, consider an arbitrary m, and assume that for all m’ = 1,...,m — 1, payoff x,, is
not clinchable at any h' C h, but z,, is clinchable at some h’ C h. Let z,, be (a) payoff that
becomes impossible at ﬁ_m and is such that z,,, =; x,,. There are two cases:

Case (i): I/ C h_,,. This is the case where z,, is clinchable while there is some strictly
preferred payoff v >=; ., that is still possible. Note that at history h_,,, neither (a) nor (b)
in the definition of a millipede game hold for x,,,. Further, by the inductive hypothesis, x,,

10At least one such z’ exists by the assumption that Top(>=;, Ci(h)) # Top(=:, P;(h)), though there in
general may be multiple such z’.

4171t is possible that h,, is a terminal history.

42Recall that for terminal histories h, we define C;(h) = {x}, where z is the unique payoff associated with
the terminal history. Thus, if A’ is a terminal history, then 7 receives payoff z;, which also contradicts that
she receives payoft xyy (h).
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is nowhere clinchable, and so (¢) does not hold either. This implies that (d) must hold, and
S0 z,, must be clinchable at h_,,. Then, since all preferred payoffs are no longer possible at
fz,m, T, s the best possible payoff remaining, and is clinchable. Therefore, greedy strategies
instruct agent i to clinch z,,, which contradicts that she receives zy (h).

Case (ii): W' D h_pm. In this case, x,, becomes clinchable after all strictly preferred
payoffs are no longer possible. Thus, again, greedy strategies instruct ¢ to clinch z,,, which

contradicts that she is receiving zy (h). O

To finish the proof, again let A = max{hy, ks, . .., has} and let & be a payoff that becomes
impossible at h. The claim shows that # is not clinchable at any h' C h. The preceding two
statements imply that conditions (a)-(c) in the definition of a millipede game do not hold
at h, and so condition (d) must hold, i.e., zo(h) € Cy(h). Since z¢(h) is the best possible
remaining payoff at iL, greedy strategies direct i to clinch z¢(h), which contradicts that she

receives xyy(h). 4 O

We now prove the second part of the theorem, restated below as Proposition 2. To do
so, we first need to introduce the pruning principle of Li (2017), which will simplify some
of the arguments. Given a game I' and strategy profile (S;(>;))ienr, the pruning of I' with
respect to (S;(>;))ien is a game I that is defined by starting with I' and deleting all histories
of I that are never reached for any type profile. Then, the pruning principle says that
if (S;(>i))ien is obviously dominant for I'; the restriction of (S;(>;))iear to I is obviously
dominant for IV, and both games result in the same outcome. Thus, for any OSP mechanism,
we can find an equivalent OSP pruned mechanism. When proving this proposition, we assume
that all OSP games have been pruned with respect to the equilibrium strategy profile. Note
also that we actually prove a slightly stronger statement, which is that every OSP game is
equivalent to a millipede game that satisfies the following additional property: for all 7, all

h at which ¢ moves, and all x € G;(h), there exists an action a, € A(h) that clinches z.*

Proposition 2. Every obviously strategy-proof mechanism (I', Sxr) is equivalent to a milli-

pede game with the greedy strategy.
Proof. The proof of this proposition is broken down into several lemmas.

Lemma 1. Fvery OSP game is equivalent to an OSP game with perfect information in which

Nature moves at most once, as the first mover.

BIf h is a terminal history, then we make an argument analogous to footnote 42 to reach the same
contradiction.
44Gee Lemma 3 below.
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Proof. Ashlagi and Gonczarowski (2016) briefly mention this result in a footnote; here, we
provide the straightforward proof for completeness. We first show that every OSP game is
equivalent to an OSP game with perfect information. Denote by A (Z) the set of actions
available at information set Z to the agent who moves at Z. Take an obviously strategy-proof
game ' and consider its perfect-information counterpart I, that is the perfect information
game at which at every history h in I' the moving agent’s information set is {h} in I", the
available actions are A (Z), and the outcomes in I” following any terminal history are the
same as in I. Notice that the support of possible outcomes at any history h in I is a
subset of the support of possible outcomes at Z (h) in I'. Thus, the worst-case outcome from
any action (weakly) increases in I, while the best-case outcome (weakly) decreases. Thus, if
there is an obviously dominant strategy in I', following the analogous strategy in I'' continues
to be obviously dominant. Hence, I is obviously strategy-proof and equivalent to T

We now show that every OSP game is equivalent to a perfect-information OSP game in
which Nature moves once, as the first mover. Consider a game I', which, by the previous
paragraph, we can assume has perfect information. Let H,.iue be the set of histories h at
which Nature moves in I'. Consider a modified game I in which at the empty history Nature
chooses actions from Xpeqs.,... A (h). After each of Nature’s initial moves, we replicate the
original game, except at each history h at which Nature is called to play, we delete Nature’s
move and continue with the subgame corresponding to the action Nature chose from A(h)
at (). Again, note that for any agent ¢ and history h at which 7 is called to act, the support
of possible outcomes at h in I is a subset of the support of possible outcomes at the
corresponding history in I' (where the corresponding histories are defined by mapping the
A (h) component of the action taken at () by Nature in I" as an action made by Nature at
h in game T'). Using reasoning similar to the previous paragraph, we conclude that I is

obviously strategy-proof, and I' and I are equivalent. O]

Lemma 2. Let I' be an obuviously strategy-proof game of perfect information that is pruned
with respect to the obviously dominant strategy profile (S;(>=;))ienr- At any history h where an
agent i is called to move, there is at most one action a* € A(h) such that Pi((h,a*)) € G;i(h).

Proof. We prove this result via two steps.

Step 1. Suppose there are two distinct payoffs x,y € P;(h) \ G;(h) and a preference type
>, such that (i)  and y are the first and second >; —best possible payoffs in P;(h), and (ii)
h is on the path of the game for type ;. Then, there is at most one action a* € A(h) such
that P;((h,a*)) € G;(h), and type >=; must choose action a* at h.

To prove the claim of this step, it is enough to consider the case x »=; y. First, note

that if x € P;((h,a)) for some a € A(h), then y € P;((h,a)) as well. Indeed, if not then
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x € Py((h,a)) and y ¢ P;((h,a)). For type >;, the worst case outcome from following a is
strictly worse than y because x and y are assumed to be the =; —best possible payoffs in
Pi(h), x is not guaranteeable at h, and y is not possible following a. Because y € P;(h),
action a is not obviously dominant. As x is not guaranteeable at h, the worst case outcome
from any other a' # a is strictly worse than x, while the best case outcome from a is x, and
so no a’ can obviously dominate a. Thus, type =; has no obviously dominant action, which
contradicts that the game is OSP, and proves the claim of this paragraph.

Now, assume that there are two actions aj and aj such that P;((h,a})) € Gi(h) for
j = 1,2. Consider some = € Pi(h) \ G;(h). By the previous paragraph, we know that
x € Py((h,a})) and z € P,((h,a3)). However, by assumption, = is not guaranteeable at h,
and so, for type >=;, the worst case payoff from any action a’ must be strictly worse than z,
while the best case outcomes from aj and a} are both x. Therefore, no action o’ € A(h) is
obviously dominant, which contradicts that I" is OSP.4°

We can conclude that there is at most one action a* that leads to x for some continuation
strategies of players. Because x is only possible following a*, if an obviously dominant
strategy profile exists, any type >=; that ranks any = € P;(h) \ G;(h) first among the payoffs
in P;(h) must select a* at this history, concluding the proof of the claim of Step 1.

Step 2. Suppose i moves at history h. Then, there is at most one action a* € A(h) such
that P;((h,a*)) € G;i(h).

To prove this step, first consider any earliest history h{ at which 7 is to move. Note
that since this is an earliest history for 7, history h{ is on the path of play for all types of
agent i. If P;(hY) \ G;(hy) = {x} and there were two actions a} and a} as in the statement,
then for any type that ranks x first, the worst case from any action is strictly worse than x
(because x is not guaranteeable), while the best case from both @} and @} is x, so nothing
can obviously dominate aj; by similar reasoning, aj does not obviously dominate aj. If there
are two payoffs z,y € P,(h}) \ G;(Rhi), then we can apply Step 1 to type x =; y =; - -

Now, consider any successor history i’ D h{ at which i is to move, and make the inductive
assumption that at every h C I, there is only one possible action a* € A(h) such that
Pi((h,a*)) € G;(h). First, consider the case where |P;(h’) \ G;(h')| = 1, and let x be the
unique payoff that is possible but not guaranteeable. By way of contradiction, assume there
were two actions, a] and a3, such that x was a possible outcome. By the pruning principle,
some type =; must be receiving x at some terminal history h D h/. If x is the top choice

among all payoffs in P;(h’) for some type >=; for which history A’ is on-path, then, following

45Note that if there were only one such action a?, then it would still be true that there is no action that
obviously dominates aj for this type. However, aj itself might be obviously dominant. When there are two
such actions, a] does not obviously dominate a3, nor does a3 obviously dominate aj, and thus there are no
obviously dominant actions.
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similar reasoning as above, neither aj nor aj can be obviously dominant. If = is not the best
possible payoff in P;(h’) for any such type, then, since x is the only payoff that is possible,
but not guaranteeable, every other payoff in P;(h’) is guaranteeable. This implies that every
type of agent i for which A’ is on-path can guarantee herself her best possible outcome in
P;(1'), and so no type should ever play a strategy for which she ends up receiving a payoff
of  at any terminal history A D &/, which is a contradiction.

Finally, assume |P;(h') \ G;(h')| > 2, and let x,y € P,(h') \ G;(I'). First, consider the
case that there is some x € P;(h') \ G;(I') such that = ¢ G;(h) for all h C b’ at which i is
to move. Recall the inductive hypothesis says that at all such h, there is a unique action
such that P;((h,a*)) € G;(h). Thus, if x has never been guaranteeable, all types x >; - - -
must have followed this unique action at all such A C A/, and we can apply Step 1 to the
type x >=; y >=; ---. The last case to consider is where all z,y € P;(h') \ G;(h') were also
guaranteeable at some earlier history h. Consider a type »; of agent ¢ who receives payoff z
at some terminal history A D A’. First, note that for any z =; =, z ¢ G;(h') as otherwise this
type would not follow a strategy whereby x was a possible outcome.*® Let z be the =; —best
payoff in P;(h'), and w be the second-best possible payoff in P;(h’) for this type; we allow
w = x. We can again apply Step 1 to type >; and conclude there is at most one action a*

such that P;((h,a*)) € G;(h). O

Clinching actions are those for which ¢’s payoff is completely determined after following
the action. Lemma 2 shows that if a game is OSP, then at every history, for all actions a
with the exception of possibly one special action a*, all payoffs that are possible following a
are also guaranteeable at h; note, however, it does not say that all actions but at most one
are clinching actions. Indeed, it leaves open the possibility that there are several actions that
can ultimately lead to multiple final payoffs for ¢, which can happen when different payoffs
are guaranteeable for i by following different actions in the future of the game. The next
lemma shows that if this is the case, we can always construct an equivalent OSP game such

that all actions except for possibly one are clinching actions.

Lemma 3. Let I' be an obuviously strategy-proof game of perfect information that is pruned
with respect to the strategy profile (S;(>;))ienr- There exists an equivalent obviously strategy-
proof game I'" with perfect information such that:

(1) At each history h, at least |A(h)| — 1 actions at h are clinching actions.

(i1) For every payoff © € G;(h), there exists an action a, € A(h) that clinches x.

Proof. Consider some history h of game I' at which ¢ moves. By Lemma 2, all but at most

46Tf 7 is the »=;-best possible payoff in P;(h’) for all types that reach h’, then apply the same argument to
a type that receives y at some terminal history and set z = x.
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one action (denoted a*) in A(h) satisfy P;((h,a)) C G;(h); this means that any obviously
dominant strategy for type >=; that does not choose a* guarantees the best possible outcome
in P;(h) for type =;. Thus the set S;(h) = {S; : |X(h,S;)] = 1} contains all possible
obviously dominant strategies of agent i for which A is on path and that do not choose a*.
Notice that S;(h) is the set of strategies that guarantee some payoff x for i if i plays strategy
S, starting from history h.

We create a new game IV that is the same as I', except we replace the subgame starting
from history h with a new subgame defined as follows. If there is an action a* such that
P,((h,a*)) € G;(h) in the original game (of which there can be at most one), then there is
an analogous action a* in the new game, and the subgame following a* is exactly the same
as in the original game I'. Additionally, there are M = |S;(h)| other actions at h, denoted
ai,...,ay. Each a, corresponds to one strategy S/ € S;(h), and following each a,,, we
replicate the original game, except that at any future history A" O h at which 7 is called on
to act, all actions (and their subgames) are deleted and replaced with the subgame starting
with the action o’ = S/"(h’) that ¢ would have played in the original game had she followed
strategy S!"(-). In other words, if i were to choose some action a # a* at h in the original
game, then, in the new game I, we ask agent i to choose not only her current action, but
all future actions that she would have chosen according to S!"(-) as well. By doing so, we
have created a new game in which every action (except for a*, if it exists) at h clinches some
payoff z, and further, agent i is never called upon to move again.*”

We construct strategies in [ that are the counterparts of strategies from I', so that for
all agents j # 4, they continue to follow the same action at every history as they did in
the original game, and for i, at history h in the new game, she takes the action a,, that is
associated with the strategy S;" in the original game. By definition if all the agents follow
strategies in the new game analogous to the their strategies from the original game, the
same terminal history will be reached, and so I" and I are equivalent under their respective
strategy profiles.

We must also show that if a strategy profile is obviously dominant for I', this modified
strategy profile is obviously dominant for I". To see why the modified strategy profile is
obviously dominant for ¢, note that if her obviously dominant action in the original game was
part of a strategy that guarantees some payoff x, she now is able to clinch x immediately,
which is clearly obviously dominant; if her obviously dominant strategy was to follow a

strategy that did not guarantee some payoff x at h, this strategy must have directed i to

4"More precisely, all of i’s future moves are trivial moves in which she has only one possible action; hence
these histories may further be removed to create an equivalent game in which ¢ is never called on to move
again. Note that this only applies to the actions a # a*; it is still possible for i to follow a* at h and be
called upon to make a non-trivial move again later in the game.
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follow a* at h. However, in I, the subgame following a* is unchanged relative to I', and
so i is able to perfectly replicate this strategy, which obviously dominates following any
of the clinching actions at h in I". In addition, the game is also obviously strategy-proof
for all j # i because, prior to h, the set of possible payoffs for j is unchanged, while for
any history succeeding h where j is to move, having ¢ make all of her choices earlier in
the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and so,
if a strategy was obviously dominant in the original game, it will continue to be so in the
new game. Repeating this process for every history h, we are left with a new game where, at
each history, there are only clinching actions plus (possibly) one passing action, and further,

every payoff that is guaranteeable at h is also clinchable at h. O]

Lemma 4. Let I' be an obviously strategy-proof game that is pruned with respect to the
obviously dominant strategy profile Syc and that satisfies Lemmas 1 and 3. At every history h*
at which an agent i moves and every terminal history h, for every payoff z, one of conditions
(a)-(d) must hold.

Proof. Assume not. First, consider the case of a non-terminal history h* where i is called to
move and a payoff 2z be such that (a), (b) and (c) do not hold at h?, i.e., the following are
true:

(@) = ¢ P(W)

(b’) z € Pi(h) for all h € H;(h")

(€") 2 & Upegp,(u)Cilh) and

Points (b’) and (c¢’) imply that z is possible at every h C h* where 7 is to move, but it is
not clinchable at any of them. This implies that for any type of agent ¢ that ranks z first,
any obviously dominant strategy must have the agent passing at all h € H;(h?).4®

Towards a contradiction, assume that (d) did not hold, i.e., there exists some b’ € H;(h?)
and x € C;(h') such that = ¢ C;(h?). Consider a type z =;  =; ---. We argue that if (d)
does not hold at &’, then there is some A’ C h' such that type =; has no obviously dominant
action. First, note that at any such hi C h%, no clinching action can be obviously dominant,
because z is always possible following the passing action, but is never clinchable, and so the
worst case from clinching is strictly worse than the best case from passing, which is z. Next,

there must be some A C h' such that the passing action also is not obviously dominant.

48 At all such h, since z is not clinchable, but is possible, it must be possible following the (unique) passing
action. This means that best case outcome from passing is z, while the worst case outcome from clinching
is strictly worse than z. Thus, no clinching action can be obviously dominant, so, if an obviously dominant
strategy exists, it must instruct 7 to pass.
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To see why, note that h* must be on the path of play for type =;, since she must pass at
all ' C h'. By assumption, z ¢ P;(h') and = ¢ C;(h’), which implies that the worst case
outcome from passing at any h/ C A’ is some y that is strictly worse than z according to
;. However, we also have x € C’Z(iﬂ) for some A/ C h', and so, the best case outcome from
clinching x at hiis z. This implies that passing is not obviously dominant, which contradicts
that I" is OSP.

Last, consider a terminal history h. As above, let z be a payoff such that (a’), (b’), and
(¢’) hold (i.e., (a), (b), and (c) are false). By definition, C;(h) = {y} for all i, where y is the
unique outcome associated with terminal history h (note also that z ¢ P;(h) implies that
y # 2). Assume that (d) does not hold, i.e., there exists some h' € H;(h) and = € C;(h')
such that = ¢ C;(h). Note that (i) z # y (because z ¢ P;(h)); (i) z # z (by (¢)); and (iii)
x # 1y (because x ¢ C;(h)). In other words, x,y, z must all be distinct payoffs. Consider the
type 2 =; ¥ =; y =; ---. By (b’) and (¢), z is possible at every h C h where i is to move,
but is not clinchable at any such history. Thus, any obviously dominant strategy of type >;
must have agent i passing at any such history. However, at h’, i could have clinched z, and

so passing is not obviously dominant (because y is possible from passing). O

Proposition 2 follows from Lemmas 1, 3, and 4. Theorem 1 then follows from Propositions
1 and 2.

A.2 Proof of Theorem 2

Consider any two strategies S; and S, of agent i; let h be the earliest point of departure for
these two strategies.

Suppose S; is strongly obviously strategy-proof in I'. Then any outcome that is possible
after playing S; is weakly better than any outcome that is possible after playing S! in game
[, and hence in the outcome set-equivalent game IV. Hence, S; strongly obviously dominates
S! in game [, and thus it weakly dominates it.

Now suppose S; weakly dominates S! in all games [ that are outcome equivalent to I
Consider such a [ in which all moves of agent i following history h are made by Nature
instead. Since, S; weakly dominates S} in I, we conclude that any outcome that is possible
after playing S; is weakly better than any outcome that is possible after playing S/ in game
['", and hence in the outcome set-equivalent game I'. Hence, S; strongly obviously dominates

S! in game ['. O
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A.3 Proof of Theorem 5

It is obvious that almost-sequential dictatorships are SOSP and efficient. For the other
direction, note that by our previous Lemma 3, any OSP game is equivalent to one such that
there is at most one non-clinching move at each history, and everything that is guaranteeable
is also clinchable. We show that in fact, for every history that is not penultimate to a terminal
history, all moves must be clinching moves. By strengthening OSP to strong OSP, following
any move, we need only consider the entire set of possible outcomes for i following any

action.??

We proceed by induction. Consider N = 2, and denote N' = {i,j} and O = {0y,09}.>°
Consider any efficient and SOSP game I'. Without loss of generality, let the first mover be
7, and note that by efficiency, both 0; and 0, must be possible for her. Again without loss of
generality, assume she can clinch oy at the first move (she must be able to clinch at least one
of 01 or 09, since there can be at most one non-clinching move). Consider the first agent who
is offered the opportunity to clinch oy (following starting the game by a series of passes). If
this agent is ¢, then it is equivalent to offer her the opportunity to clinch o, at her first move,
and the mechanism is again a serial dictatorship. If the first person to be able to clinch o,
is 7, then it is equivalent to offer her the opportunity to clinch oy at her first move, and the
game is an almost sequential dictatorship.

Consider now N = 3, where N' = {4, j,k} and O = {01,09,03}, and let the first mover
be i. By efficiency, all items are possible for her at the initial history. Assume she had a
non-clinching move. This means for one of her actions, labeled a*, there are (at least) two
possible outcomes, 01 and og, at least one of which (say o;) is not clinchable at the initial
history. There are two cases, depending on whether the third outcome o3 is clinchable or
not:

03 1is clinchable at the initial history: By assumption, os is clinchable and o; is not.
Consider type 07 =; 03 >=; 0o. None of her clinching actions are strongly obviously dominant,
since oy is possible following a*. In addition, a* is also not strongly obviously dominant, since
09 is possible, but she could have clinched o3. Thus, this type of agent ¢ has no strongly
obviously dominant strategy.

03 1s not clinchable at the initial history: In this case, oy is clinchable, but o; and o3 are
not (since only one passing move is allowed). Then, consider type o3 >=; 05 >=; 0. 03 must be

possible (by efficiency), and so must be possible following a*. This means that no clinching

‘

49Under OSP, the current mover may have “veto power” over some future outcomes, but not others;
however, this requires reasoning about the future, and so is eliminated by strong OSP.

50Recall that O is the set of objects to be assigned, while the outcome space X is the set of all possible
allocations. Since an agent’s payoff is determined by only her own allocation, we will use the notation
01 »; 02 »; -+ - to describe an agent’s type.
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action is strongly obviously dominant. Following the (unique) non-clinching action is also
not strongly obviously dominant, because o; is possible following a*, while o0y is clinchable.

Thus, the first agent to move must have only clinching actions, and, by efficiency, must
be able to clinch any object. Following any such clinching move, the game is equivalent to
a game of size N = 2, which we have already shown is equivalent to an almost-sequential
dictatorship.

Last, assume that for every market of size n = 1,..., N — 1 any efficient and SOSP
game is equivalent to an almost sequential dictatorship. Consider a market of size N. Let
N = {i1,...,in} and O = {0y,...,0x}. By efficiency, all items are possible for the first
mover, 71, at the initial history. We argue that all of her actions must be clinching actions.

Assume not. Then there is exactly one action a* that is a passing action. By definition
of a passing action, there must be (at least) two possible outcomes, o; and o0y, at least one
of which (04, say) is not clinchable at the initial history. There are two cases:

There exists a z # 01,09 that is clinchable at the initial history: By assumption, z is
clinchable and oy is not. Consider type oy >;, z >; ---. None of the clinching actions are
strongly obviously dominant, since o; is possible following a*, but cannot be clinched. In
addition, a* is not strongly obviously dominant, because oy is possible following a*, while z
is clinchable.

There does not exist a z # 01,09 that is clinchable at the initial history: In this case,
0o must be clinchable, while all z # o0y are not. Choose some z # 01,09, and consider the
type z =i, 02 =, 01 =; -+-. Since z is possible (by efficiency), clinching o0y is not strongly
obviously dominant. However, since oy is possible following a*, while o5 is clinchable, a* is
not strongly obviously dominant either.

Thus, we have that the first mover, 7;, must have only clinching actions, and she must
be able to clinch everything. Following any of i;’s clinching actions, we have a game of size
N — 1, which, by the inductive hypothesis, is an almost sequential dictatorship. It is then

simple to see that the overall game is also an almost sequential dictatorship.

A.4 Proof of Theorem 6

Suppose a game I is strongly obviously strategy-proof, efficient, and satisfies equal treatment
of equals. Our characterization of SOSP and efficient mechanisms tells us that we can assume
that IV is equivalent to an almost-sequential dictatorship, which can be run as follows: at
each history, including the empty history, Nature chooses an agent from among those agents
who have yet to move, and this agent moves. If there are three or more objects or exactly

one object still unallocated, then this agent selects his most preferred still available object
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and sends an additional message. If, for the first time, there are exactly two unallocated
objects (and thus two agents yet to move), then the agent who moves either (i) selects his
most preferred object and sends a message, or (ii) has a choice of clinching one of the two
objects (and sending a message) or passing. In the latter case, Nature selects the other agent
who has yet to move, who chooses his best object, and the agent who passed obtains the
remaining object.

The reminder of the proof is by induction on the number k of agents that have been
called to move. We will show that each time Nature calls an agent to move, it must select
uniformly at random from all agents who have yet to be called. Consider k = 1 (i.e., the
first agent called), and suppose there are more than three agents and objects. Consider a
preference profile where all agents rank objects in the same order, o1 > 03 > --- > oy. By
equal treatment of equals, all agents must receive object 0o; with equal probability. Since, at
this profile, 0; is always taken by the first mover, we conclude that Nature must select each
agent to be the first mover with equal probability.

Now, consider any k-th move, where k < N, and assume that for all moves 1,...,k — 1,
each remaining agent at that point was called on by Nature with equal probability. Label
the history under consideration as h, and name the agents so that along the path to h, the
first mover is 7; who chooses 01, then iy chooses 0o, etc. until 7;,_; chooses 0p_1.

Suppose first that there are at least three objects left. We claim that each agent who
has not moved yet has an equal chance to be called by Nature at history h. To see why,
consider some object o # o1, ...,0,_1 and the preference profile in which each agent i,, for
¢=1,....,k — 1, ranks objects so that

01 7, 02 7y o 74y O 5, O =4, "+~

and other objects are ranked below o. Let Y (h) = I —{iy,...,ix_1} be the set of agents who
have yet to move at h, and assume that all ¢ € Y'(h) have the same preferences and rank o
first. The total probability that i receives o is equal to the sum of (1) the probability that
Nature chooses i at h and (2) the probability that Nature chooses i to move at any other
h' # h where o is still available. The crux of the argument is to note that for the preferences
specified, for any other branch of the tree (that does not contain history h), object o will
be claimed by someone at the (k — 1)-th move or earlier. By the inductive hypothesis, each
time Nature picks an agent to move at any of these histories, all agents in Y (h) have an
equal probability of being picked, and, if they are, they will immediately claim object o.
This implies that (2) is the same for all agents ¢ € Y'(h). Since the sum (1)+(2) must also

be the same for all agents (by equal treatment of equals), we conclude that (1) is also the
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same for all 4,5 € Y (h), i.e., the probability that i is chosen to move at h is equal to the
probability that j is chosen to move at h, as desired.

Last, suppose that there are exactly two objects o and o left at history h. With two
objects, Bogomolnaia and Moulin (2001) show that Random Priority is the only strategy-
proof and efficient mechanism that satisfies equal treatment of equals, and the claim follows

from their work.?!

B Extensions: Outside Options

Consider the allocation model of Section 5, and suppose that each agent has an outside

option.

B.1 Individual Rationality

We say that a game is individually rational if each agent can obtain at least his outside
option. The analogues of our results hold true for individually rational games as soon as the
domain of each agent’s preferences satisfy the domain condition from Section 2 restricted to
sets X C X that do not contain the outside option of this agent. Our proofs remain valid in

this setting.

B.2 Restricted Domains

Our results hold true also in allocation domains in which any agent prefers any object to the

outside option. Our proofs remain valid also in this setting.®?
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