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STABILITY AND PREFERENCE ALIGNMENT IN MATCHING
AND COALITION FORMATION

BY MAREK PYCIA1

We study matching and coalition formation environments allowing complementar-
ities and peer effects. Agents have preferences over coalitions, and these preferences
vary with an underlying, and commonly known, state of nature. Assuming that there
is substantial variability of preferences across states of nature, we show that there ex-
ists a core stable coalition structure in every state if and only if agents’ preferences are
pairwise-aligned in every state. This implies that there is a stable coalition structure if
agents’ preferences are generated by Nash bargaining over coalitional outputs. We fur-
ther show that all stability-inducing rules for sharing outputs can be represented by a
profile of agents’ bargaining functions and that agents match assortatively with respect
to these bargaining functions. This framework allows us to show how complementari-
ties and peer effects overturn well known comparative statics of many-to-one matching.

KEYWORDS: Many-to-one matching, assortative matching, coalition formation, sta-
bility, core, complementarities, peer effects, sharing rules, consistency, Nash bargain-
ing.

1. INTRODUCTION

AGENTS FORM COALITIONS in many environments. In some of them, two dis-
tinct groups of agents match many to one: colleges form coalitions with in-
coming students, and hospitals form coalitions with new residents. In others,
the structure is one-sided: individuals form private clubs and partnerships,
and firms form business alliances. What coalitions will form in these environ-
ments? A natural answer relies on the notion of stability: a partition of agents
into coalitions is (core) stable if there does not exist a counterfactual coalition
which its members prefer to their coalitions in the partition.2

The present paper introduces a unified framework to study coalition forma-
tion including many-to-one matching and one-sided coalition formation. The

1Sections 4, 5.1, and 6.2 of this paper synthesize the first two chapters of my dissertation at MIT.
I would like to thank Bengt Holmström, Glenn Ellison, Haluk Ergin, Robert Gibbons, Anna
Myjak-Pycia, Michael Piore, and Jean Tirole for their advice and support. Sections 3, 4, and 7
were developed while I was at Penn State. For their generous comments, I am grateful to various
seminar audiences, Andrew Atkeson, Abhijit Banerjee, Simon Board, Peter Chen, Dora Costa,
Federico Echenique, Michael Egesdal, Alfred Galichon, Edward Green, Christian Hellwig, Hugo
Hopenhayn, Sergei Izmalkov, George Mailath, Moritz Meyer-ter-Vehn, Kenneth Mirkin, Benny
Moldovanu, Hervé Moulin, Ichiro Obara, Marco Ottaviani, Alvin Roth, Mordechai Schwarz,
Alex Teytelboym, William Thomson, Hannu Vartiainen, Rakesh Vohra, Birger Wernerfelt, and,
especially, Jingyi Xue and William Zame. The constructive comments of the editor and four ref-
erees greatly improved the paper. Financial support from the Hausdorff Institute in Bonn, MIT
Industrial Performance Center, and Koźmiński University in Warsaw is gratefully acknowledged.

2See Gale and Shapley (1962), Buchanan (1965), and Farrell and Scotchmer (1988). Roth
(1984) and Roth and Peranson (1999) linked the lack of stability to market failures.
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main results establish a necessary and sufficient condition for stability, taking
agents’ ordinal preferences as primitives. We apply this tight condition for sta-
bility to study environments in which coalition members jointly produce and
share output: we characterize sharing rules that induce stability and we derive
qualitative properties of the resulting stable coalition structures. The condition
for stability allows for complementarities and peer effects, and it makes their
analysis tractable. In particular, we check how the presence of complementar-
ities and peer effect affects the properties of stable matchings.

We focus on environments in which agents care only about the composition
of their coalition and are not affected by other coalitions that might form. In
these environments, the set of stable coalition structures is determined by the
profile of agents’ preferences over coalitions. We can thus identify an environ-
ment with the set of agents’ preference profiles that are possible in that envi-
ronment. The main results presume that the environment contains a rich vari-
ety of possible preference profiles so that, roughly speaking, any agent can rank
the coalitions he or she belongs to in all possible ways. For instance, consider
an environment in which agents first learn what outputs coalitions can produce,
and then form coalitions, produce output, and share the output equally. In this
environment, the agents’ preferences over coalitions depend on the profile of
coalitional outputs, and the resulting set of preference profiles is rich if all non-
negative profiles of coalitional outputs are possible. This example is developed
in Section 2. We, furthermore, focus on matching environments in which each
firm has a capacity to hire at least two workers and on one-sided coalition for-
mation in which every three agents can form a coalition.3

The main results—Theorems 1 and 2—establish that there is a stable coali-
tion structure for all preference profiles if and only if agents’ preferences are
pairwise aligned in all preference profiles.4 Agents’ preferences are pairwise
aligned if any two agents rank proper coalitions that contain both of them in
the same way. For instance, a firm prefers a firm-and-one-worker coalition to
a larger coalition if and only if the worker does. We further show that if pair-
wise alignment is satisfied and preferences are strict, then the stable coalition
structure is unique in many-to-one matching, and there are at most two stable
coalition structures in one-sided coalition formation.

We apply these main results to characterize sharing rules that induce stability
in matching and coalition formation environments in which coalition members

3For a firm to perceive two workers as complementary—or for the workers to experience peer
effects—the firm must be able to employ at least two workers. Similarly, for an agent to see
others as complementary in one-sided coalition formation, the coalition must be at least of size 3.
Hence, our assumptions are without much loss of generality for the analysis of complementarities
and peer effects. The assumptions also simplify the formulation of our other results, and the two
main problems we are excluding—one-to-one matching and the roommate problem—are both
fairly well understood.

4Both directions of implication rely on the richness assumption, which plays a similar role to
the uniform-domain assumptions of Arrow (1951) and Nash (1950).
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jointly produce and share output. As in the example above, agents’ payoffs
in each coalition are determined by the coalitional output and a sharing rule.
A sharing rule is a collection of functions—one for each coalition–member
pair—that map coalitional output to the member’s share of the output. When
the sharing rule is fixed, each profile of outputs determines a profile of agents’
preferences over coalitions. The domain of preference profiles obtained as we
vary outputs is rich provided that the functions defining the sharing rule are
continuous and monotonic, and that each member’s share can be arbitrarily
large when the coalition’s output is sufficiently large. Hence, the main stabil-
ity results imply that such a sharing rule leads to stable coalition formation
problems if and only if it generates pairwise-aligned preference profiles.5

Some sharing rules generate pairwise-aligned profiles, but others do not. For
instance, preferences are pairwise aligned if agents’ shares in each coalition
are determined through equal sharing, multiagent Nash bargaining, Tullock’s
(1980) rent-seeking game, or egalitarian and Rawlsian sharing rules, but not
if the shares are determined through Kalai–Smorodinsky bargaining. Our sta-
bility results thus imply that if the shares are determined through, say, Nash
bargaining, then there always exists a stable coalition structure. They also im-
ply that if the shares are determined through Kalai–Smorodinsky bargaining,
then there is no stable coalition structure for some output profiles.

The above existence results build on earlier work by Farrell and Scotchmer
(1988), who established the existence of stable coalition structures for equal
sharing, and by Banerjee, Konishi, and Sönmez (2001), who established the ex-
istence of stable structures for some other linear sharing rules.6 We go beyond
their results by establishing the general and tight connection between pairwise-
aligned rules and stable outcomes, and thus, for instance, showing that Nash
bargaining implies stability.

5Among efficient and monotonic sharing rules on proper coalitions, rules that generate
pairwise-aligned preferences are precisely those which are consistent in the sense of Harsanyi
(1959) and Thomson and Lensberg (1989). We thus establish a link between stability and consis-
tency. Prior work on consistency and the core is only superficially related: studies such as Peleg
(1986) examined consistency properties of the core itself, assuming the core is nonempty (cf.
Thomson’s (2009) survey), while our results imply that the consistency of the underlying sharing
rule is linked to the nonemptiness of the resultant core.

6Farrell and Scotchmer observed that, under equal sharing, the per-agent payoff from a coali-
tion is the same for all agents, and thus there is a common ranking of all coalitions that agrees with
agents’ rankings. They then concluded that there exists a stable coalition structure because the
coalition at the top of the common ranking cannot be blocked, and then the top coalition among
the remaining agents cannot be blocked, and so on. When specialized to the sharing rules setting,
our existence results go beyond Farrell and Scotchmer’s by replacing equal sharing with pairwise
alignment and by showing that in this way we obtain the entire class of stability-inducing sharing
rules. A (relaxed) analog of their common ranking structure is true in our setting; the construction
of such a relaxed common ranking is central to our uniqueness argument. Section 5.2 compares
our results on assortativeness with those of Farrell and Scotchmer. None of our other results has
a counterpart in Farrell and Scotchmer (1988) or in prior developments of their setting.
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We then study qualitative properties of stable coalition structures formed
when coalition members share output according to stability-inducing sharing
rules. As an auxiliary result, we show that each pairwise-aligned rule that ef-
ficiently shares the output in each coalition can be represented by a profile
of agents’ “bargaining functions.” As in Nash bargaining, members of each
proper coalition share output as if they were maximizing the product of their
bargaining functions.7

The coalition structures formed under stability-inducing sharing rules are as-
sortative: agents sort themselves into coalitions according to their productivity
and the Aumann and Kurz (1977) fear-of-ruin coefficient of their bargaining
functions.8 Agents with similar bargaining functions tend to belong to the same
coalitions in the stable structure.9 Thus, roughly speaking, we should observe
less variation in bargaining power within a coalition than within the society at
large.

Because the sharing rules are exogenous, agents face a holdup problem:
some beneficial coalitions may not form because agents with strong bargain-
ing power are not able to commit to reward adequately agents with relatively
weak bargaining power. We discuss holdup in the concluding remarks.

Our last result on sharing rules compares stable coalitions across differ-
ent stability-inducing sharing rules. Assuming that outputs are independently
drawn from distributions with monotone hazard rates and that there are no
ex ante productivity differences among coalition members, this paper shows
that the probability of a coalition being stable is larger when the bargaining
functions of coalition members are more equal.10 This result provides a first
step toward understanding how inequality of bargaining functions affects the
distribution of coalition sizes.

7Translated in terms of consistency (see footnote 5), the above characterization extends the
main insight of Lensberg (1987) to many-to-one matching.

8When we control for productivity, the results imply that in many-to-one matching and in
one-sided coalition formation, stability itself is a sufficient condition for monotonic sorting on
bargaining functions. This contrasts with sorting on exogenous productivity types, where Becker
(1973) and the subsequent literature established supermodularity-type conditions that ensure
that agents sort monotonically in their types (see, for instance, Shimer and Smith (2000), Legros
and Newman (2007), and Eeckhout and Kircher (2010)).

9In particular, if agents share output in Nash bargaining and are endowed with constant rela-
tive risk aversion utilities, then they match in a positive assortative way according to risk aversion.
This remains true in one-to-one matching, and is of interest in the context of the large empirical
literature on risk-sharing and its recent critique by Chiappori and Reny (2006). Observing that
the literature relies on the implicit assumption that agents match in a positive assortative way ac-
cording to risk aversion, Chiappori and Reny argued that this is impossible in a general model of
one-to-one matching. Their result turns out to hinge on the assumption—shared by the empirical
literature they criticize, but not by this paper—that agents can freely contract on the sharing of
output.

10The assumption of symmetry of the distribution of coalition members’ productivity is im-
portant. See Abramitzky (2008) for an empirical analysis of how productivity differences among
members affect the stability of Israeli equal-sharing kibbutzim.
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The rest of the paper applies its main results to analyze many-to-one match-
ing with complementarities and peer effects. In our framework, firms see work-
ers as complementary when the complementarity is embedded in the profile
of outputs. Workers then care who their peers are. The framework can thus
be used to model a newspaper hiring workers for a reporting assignment: if
both a reporter and a photographer are available, the newspaper wants to hire
the two of them over a generalist who can both write the article and take the
accompanying pictures reasonably well; if, however, no photographer is avail-
able, the newspaper might prefer to withhold the offer from the reporter and
hire the generalist instead. In doing so, the newspaper treats the reporter and
the photographer as complementary. Similarly, the framework can be used to
model a physician who wants to open a practice if there are enough patients
who would choose him or her as a primary care provider; if there too few, how-
ever, the physician might choose not to treat any of them. By allowing peer
effects, we allow workers to care about interactions in the workplace and al-
low the worker’s workload to be influenced by their peers. In the model of
matching between physicians and patients, we allow patients to care about the
congestion in their physician’s office. Reinterpreted in terms of schools and
students whose preferences are determined by expected schooling outcomes,
our framework allows schooling outcomes to be affected by peer effects.11

By allowing complementarities and peer effects, we depart from the stan-
dard treatment of many-to-one matching. In the matching literature it is stan-
dard to assume that firms perceive workers as gross substitutes—if a firm
chooses to employ a worker w from a pool of workers, then the firm chooses
to employ w from any subpool containing w—and that workers (or students or
doctors) care only about the identity of the firm with which they match, but not
about the identity of their peers. The gross-substitutes and absence-of-peer-
effects assumptions have been developed by Gale and Shapley (1962), Kelso
and Crawford (1982), Roth (1985), and Hatfield and Milgrom (2005), among
others.

We show that allowing complementarities and peer effects changes the stan-
dard comparative statics of many-to-one matching. For instance, in the stan-
dard model, retiring an agent from one side of the market benefits other agents
on the same side and hurts agents on the opposite side of the market (Craw-
ford (1962)). We show that this result is no longer true in the presence of com-
plementarities; in the example above, the reporter might be hurt when the
photographer retires.

Finally, we study implementation of stable matchings and coalition struc-
tures. We show that as long as the pairwise-alignment condition is satisfied, and
irrespective of whether complementarities are present, strategic agents reach a
stable matching or coalition structure on the equilibrium path of a wide variety

11Whether peer effects affect schooling outcomes is, of course, an empirical question; see, for
instance, Case and Katz (1991), Sacerdote (2001), and Angrist and Lang (2004).
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of non-cooperative games such as Gale and Shapley’s deferred acceptance al-
gorithm. This positive finding contrasts with results from the standard model,
in which strategic agents may reach an unstable outcome (Dubins and Freed-
man (1981), Roth (1982), and Ma (2010)).

The present paper is the first to propose the pairwise-alignment assump-
tion and analyze the impact of complementarities on comparative statics and
strategic play. Prior results on complementarities in matching focused on the
impossibility of obtaining existence when complementarities are allowed. For
instance, in a very general model of matching with contracts, Hatfield and Mil-
grom (2005) and Hatfield and Kojima (2008) showed that a variant of the gross
substitutes condition is the most general condition that—when imposed sepa-
rately on the preferences of each agent—guarantees the existence of a sta-
ble matching.12 Our results are consistent with their conclusion because the
pairwise-alignment assumption is a constraint on the relation between prefer-
ences of pairs of agents rather than on the preferences of individual agents.
For the study of complementarities, it is likely necessary to consider relations
between preferences and how they are co-determined by the matching envi-
ronment.

There are few positive results that go beyond the standard assumptions of
gross substitutes and absence of peer effects. Echenique and Oviedo (2004)
and Echenique and Yenmez (2007) constructed algorithms that find stable
matchings whenever they exist. Dutta and Massó (1997) allowed some peer
effects but maintained substitutability.13 Kojima, Pathak, and Roth (2010)
showed that the peer effects created by the presence of married couples be-
come less problematic as the market becomes large.

2. EXAMPLE

Before turning to the more general model, let us examine the questions and
results of the paper in the context of a simple matching environment with four
agents and two states of nature. Looking at three illustrative sharing rules will
give us a preliminary sense of which rules give us stable coalition structures
and which do not. We will also see how the stable coalition structures depend
on the sharing rule.

12Hatfield and Milgrom, and Hatfield and Kojima assumed that there are no peer effects. Klaus
and Klijn (2005), and Sönmez and Unver (2010) proved related impossibility results. Ma (2001)
provided an example of empty core when the substitutes condition is satisfied but peer effects are
present.

13Dutta and Massó (1997) weakened the absence-of-peer-effects condition in two separate
ways: (i) allowing exogenously “married” worker couples to prefer any coalition that includes
their partner over any other coalition, and (ii) allowing peer effects to influence workers’ pref-
erences between two coalitions involving the same employer (firm) but not otherwise. Revilla
(2007) further developed this line of research.
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TABLE I

COALITIONAL OUTPUTS IN STATES ω1 AND ω2

{f�1�2} {g�1�2} {f�1} {f�2} {g�1} {g�2} {f } {g} {1} {2}

State ω1 72 42 44 64 1 1 0 0 0 0
State ω2 42 99 44 64 1 1 0 1 0 0

In our example, there are two firms f and g, and two workers 1 and 2. They
are forming coalitions so as to produce output. Each firm can employ either
one or both workers. Agent a derives utility (or profit) Ua(s) from obtaining
share s of output. Let us assume that

Uf(s)= s1/2� Ug(s)= s� U1(s)= s1/6� U2(s)= s1/2�

We consider two states of nature ω1 and ω2. Agents know the state when they
form coalitions; in particular they know the outputs that each coalition can
produce if formed. The outputs are given in Table I. Thus, for instance, we
assume that coalition {f�1�2} produces 72 in state ω1 and produces 42 in state
ω2. We denote by y(C�ω) the output coalition C produces in state ω.

The output in each coalition in the resulting many-to-one matching is di-
vided according to a sharing rule. One interpretation of the sharing rule setup
is that the coalition formation and production take place on two different
dates. On date 1, the agents learn the state of nature ω ∈ {ω1�ω2} and then
form coalitions. On this date, they cannot make transfers conditional on join-
ing a coalition and cannot affect the payoffs they will obtain on date 2. In ef-
fect, on date 1, the agents’ preferences over coalitions reflect their shares of
the output produced on date 2.

Let us look at the following three sharing rules.

Equal Sharing

Agents share output equally: in state of nature ω, the share of agent i in
coalition C is y(C�ω)

|C| .
Agents’ shares of output in the four productive coalitions (rounded to the

first decimal point) are listed in Table II. Under equal sharing, there is a unique
stable matching in state ω1 and it takes the form {{f�2}� {g�1}}. In state ω2,
the unique stable matching is {{f }� {g�1�2}}. As first observed by Farrell and
Scotchmer (1988) in their study of partnerships that share profits equally, it is
not a coincidence that there is a stable matching in both states of nature when
agents share output equally. Since each agent wants to be in a coalition with
output per agent, (y(C�ω))/|C|, as high as possible, no agent wants to change
a coalition with the highest output per agent. We can hence set this coalition
aside and recursively construct a stable coalition structure.
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TABLE II

OUTPUT SHARES AND STABLE MATCHINGS FOR DIFFERENT SHARING RULES AND STATESa

{f�1�2} {g�1�2} {f�1} {f�2} Stable Matching

State ω1

Equal sharing 24, 24, 24 14, 14, 14 22, 22 32, 32 {f�2}, {g�1}
Nash bargaining 31, 10, 31 25, 4, 13 33, 11 32, 32 {f�1}, {g�2}
Kalai–Smorodinsky 33, 7, 33 25, 2, 15 30, 14 32, 32 {f�1�2}, {g}

State ω2

Equal sharing 14, 14, 14 33, 33, 33 22, 22 32, 32 {f }, {g�1�2}
Nash bargaining 18, 6, 18 59, 10, 30 33, 11 32, 32 {f�1}, {g}, {2}
Kalai–Smorodinsky 19, 4, 19 59, 5, 35 30, 14 32, 32 Does not exist

aAgents’ shares in coalitions are rounded and listed in the same order as agents. Each agent’s highest share is in
boldface type.

Nash Bargaining

Agents share output according to multiagent Nash bargaining: in state of
nature ω, members of coalition C obtain shares sa that maximize

max
sa≥0

∏
a∈C
Ua(sa)

subject to
∑
a∈C
sa ≤ y(C�ω)�

We may interpret the function Ua as the composition of agent a’s bargaining
power and utility (or profit) function.14

In both states of nature there is a unique stable matching: {{f�1}� {g�2}} in
state ω1 and {{f�1}� {g}� {2}} in state ω2. It turns out that, again, it is not a
coincidence that Nash bargaining leads to stable matchings in both states of
nature. For any profile of outputs, we can construct a stable matching. The
construction does not depend on the special power-function form of the util-
ity functions Ua. Let us take any increasing, concave, and differentiable utility
functions, normalize them so that Ua(0)= 0, and proceed in three steps. First,
observe that the so-called fear-of-ruin coefficient (Aumann and Kurz (1977))
χa(sa)= Ua(sa)/U

′
a(sa) is the same for every agent a in any given coalition C

(because the first order condition in the Nash bargaining maximization equal-
izes 1/χa and the Lagrange multiplier) and denote by χC this common fear of

14We assume that agents’ outside options are 0. This is not important. Nash bargaining leads
to stable matchings whenever the outside options are exogenous or only depend on the outputs
in single-agent coalitions.
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ruin. Second, observe that each agent’s allocation si is increasing in the com-
mon fear of ruin χC of agents in coalition C. Third, conclude that no agent
wants to change a coalition that maximizes χC and, therefore, we can set a
coalition with maximal χC aside and look at coalition formation among the
remaining agents. In this way, we can recursively construct a stable coalition
structure.

Do all sharing rules lead to stable outcomes? The answer is “No.” Consider
a third illustrative sharing rule.

Kalai–Smorodinsky Bargaining

Agents share output according to Kalai–Smorodinsky bargaining: in state of
nature ω, members of coalition C obtain shares sa such that

Ua(sa)

Ua(y(C�ω))
is constant across a ∈C and

∑
a∈C
sa = y(C�ω)�

Under Kalai–Smorodinsky bargaining, there is a unique stable matching
{{f�1�2}� {g}} in state ω1. In state ω2, however, there is no stable match-
ing. Indeed, any stable matching would need to include one of the coalitions
{f�1}� {f�2}� {g�1�2} because {f�1�2} is dominated by both {f�1} and {f�2},
and the remaining coalitions produce small or zero outputs. However, none
of the coalitions {f�1}� {f�2}� {g�1�2} can be part of a stable matching for the
following reasons:

• Coalition {g�1�2} would be blocked by worker 1 and firm f .
• Coalition {f�1} would be blocked by firm f and worker 2.
• Coalition {f�2} would be blocked by worker 2 together with firm g and

worker 1.
The above three sharing rules illustrate the results of the paper. First, some

sharing rules consistently lead to stable outcomes and others do not. The pair-
wise alignment of preferences turns out to be the key differentiating factor
between equal sharing and Nash bargaining, which lead to stable outcomes
irrespective of the profile of coalitional outputs, and the Kalai–Smorodinsky
bargaining, which does not. Preferences are pairwise aligned for both equal
sharing and Nash bargaining, irrespective of the profile of outputs. The pair-
wise alignment fails, however, for Kalai–Smorodinsky bargaining in state ω1:
firm f prefers {f�1�2} over {f�1}, while worker 1 has the opposite preference.
This is not a coincidence: our first insight is that the pairwise-aligned and the
stability-inducing rules coincide. Section 4 establishes this result for the more
general setting of domains of ordinary preference profiles.

Second, we show that Nash bargaining is a typical example of stability-
inducing sharing rules. Each of them may be described by endowing agents
with a profile of increasing, differentiable, and log-concave bargaining func-
tions, and letting them share the output so as to maximize the analog of the
Nash product (see Section 5.1).
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Third, notice that under Nash bargaining, worker 2 is weaker than worker 1
and firm f is weaker than firm g. In both states, the weak worker matches
with the weak firm, and the strong worker either matches with the strong firm
or remains unmatched. Section 5.2 shows that such an assortative structure is
typical for stability-inducing sharing rules.

Fourth, in state ω2, workers 1 and 2 are in the same coalition under equal
sharing but not under Nash bargaining. Again, this is illustrative of a typical
situation. Section 5.3 shows that the more equal is the sharing among a group
of workers, the more likely they are to be in the same coalition in the stable
matching or coalition structure.

Finally, notice that workers 1 and 2 are complementary for firm g in state
ω2 under both equal sharing and Nash bargaining, and that each of the work-
ers cares whether the other is also hired by the same firm. Hence, the setting
encompasses environments in which there are complementarities and peer ef-
fects. We examine matching with complementarities and peer effects in Sec-
tion 6.

3. MODEL

Let A be a finite set of agents and let C ⊆ 2A be a set of coalitions. A coali-
tion C is proper if C �=A. Each agent a ∈A has a preference relation �a over
coalitions C that contain a. The profile of preferences of agents in A is de-
noted �A = (�a)a∈A. All references to a coalition in this paper presume that
the coalition belongs to C and all preference comparisons C �a C

′ presume
that a ∈C ∩C ′.

A coalition structure μ is a partition of A into coalitions from C . We assume
throughout that there exists at least one coalition structure. This assumption is
satisfied if, for instance, every singleton set is a coalition. A coalition structure
μ is blocked by a coalition C if each agent a ∈ C strictly prefers C to the coali-
tion in μ that contains a. A coalition structure is stable if no coalition blocks it.
This is the standard notion of core stability from the matching literature.

Let R be a subset of the Cartesian product of sets of preference profiles
of agents in A; we call R a preference domain. We do not require R to be
Cartesian.

Our main existence results generalize and formalize the comparison of shar-
ing rules from Section 2, and taken together say that—with enough coalitions
in C and preference profiles in R—all preferences in the domain admit sta-
ble coalition structures if and only if (iff) the preferences are pairwise aligned.
Preferences are pairwise aligned if for all agents a�b ∈A and proper coalitions
C�C ′ that contain a�b, we have

C �a C
′ ⇐⇒ C �b C

′�

Preferences are pairwise aligned over the grand coalition if either A /∈ C , or
A ∈ C and the above equivalence is true whenever C or C ′ equals A. No-
tice that the pairwise alignment implies that C ∼a C

′ iff C ∼b C
′ and C �a C

′
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iff C �b C
′. The pairwise alignment of preferences when agents share output in

Nash bargaining was noted already by Harsanyi (1959), and it is also straight-
forward for equal sharing. The pairwise alignment of preferences when agents
share output in Kalai–Smorodinsky bargaining fails in state ω1 of Section 2.

3.1. Regular Families of Coalitions

The family of coalitions C is regular if there is a partition of the set of
agents A into two disjoint, possibly empty, subsets F (firms) and W (workers)
that satisfy the following three assumptions:

C1. For any two different agents, there exists a coalition containing them if
and only if at least one of the agents is a worker.

C2. For any workers a1, a2 and agent a3� there exist proper coalitions
C1�2�C2�3�C3�1 such that Ck�k+1  ak�ak+1 and C1�2 ∩C2�3 ∩C3�1 �= ∅.

C3. (i) For any worker w and agent a, if {a�w} is not a coalition, then there
are two different firms f1� f2 such that {f1� a�w} and {f2� a�w} are coalitions.
(ii) No proper coalition contains W .

Assumption C1 imposes a many-to-one structure that is more general than
the standard many-to-one matching in that it does not assume away coalitions
composed entirely of workers. Assumptions C2 and C3(i) guarantee that either
workers can form three-worker coalitions or firms can hire at least two work-
ers.15 The separation of C2 and C3(i) and the partial overlap between C1 and
C3(i) allow precise matching between assumptions and results: some of the re-
sults rely on only one or two of the assumptions. Assumption C3(ii) guarantees
that no firm can hire all workers.

Assumptions C1–C3 are satisfied in many coalition formation environments.
In particular, the assumptions are motivated by the following two standard
environments:

• The unconstrained one-sided coalition formation defined by C = 2A −
{∅}.

• Many-to-one matching defined as follows: the set of agents is parti-
tioned into two subsets F (interpreted as the set of firms, colleges, or hos-
pitals) and W (interpreted as the set of workers, students, or doctors), each
agent f ∈ F is endowed with a capacity constraint Mf , and C = {{f } ∪ S : f ∈
F�S ⊆W� |S| ≤Mf } ∪ {{w} :w ∈W }�

The unconstrained coalition formation satisfies C1–C3 with W =A, F = ∅.
We prove C2 by setting C1�2 = C2�3 = C3�1 = {a1� a2� a3}. The remaining assump-
tions are straightforward. Many-to-one matching satisfies the assumptions as
long as Mf ∈ {2� � � � � |W | − 1} and |F | ≥ 2� Indeed, C1 is straightforward.
Assumption C2 requires Mf ≥ 2 for all f ∈ F , and is established by setting

15In analysis of complementarities and peer effects, assumptions C2 and C3(i) are without
much loss of generality (see footnote 3). Assumption C2 is implied by the following simpler re-
quirement: for any agents a1� a2 ∈W� a3 ∈A� there exists a proper coalition containing them.
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C1�2 = C2�3 = C3�1 = {a1� a2� a3} if a3 ∈ F , and Ck�k+1 = {ak�ak+1� f } for some
f ∈ F if a3 ∈W . Assumption C3(i) requires Mf ≥ 2 for at least two f1� f2 ∈ F ,
and is true as {a�w} is a coalition if a ∈ F , and {f1� a�w} and {f2� a�w} are
coalitions if a ∈W . Assumption C3(ii) requires Mf < |W | for all f ∈ F .16

Assumptions C1 and C2 are used to show that pairwise alignment is suf-
ficient for stability, and assumptions C1 and C3 are used to show that pair-
wise alignment is necessary for stability. The equivalence between stability and
pairwise alignment requires some assumptions on the family of coalitions, as
illustrated by the following example of the roommate problem.

EXAMPLE 1: The roommate problem is the coalition formation problem in
which C = {C ⊆ A� |C| ≤ 2}. Any preference profile in the roommate prob-
lem is pairwise aligned, but the existence of a stable coalition structure is not
assured. For instance, there is no stable coalition structure if A= {a1� a2� a3},
all agents prefer any two-agent coalition to being alone, and their preferences
among two-agent coalitions are such that

{a1� a2} �a2 {a2� a3} �a3 {a3� a1} �a1 {a1� a2}�

3.2. Rich Domains of Preference Profiles

A domain of preference profiles R is called rich if it satisfies the following
assumptions:

R1. For any profile �A∈ R, any agent a, and any three different coalitions
C0�C�C1, if C0 �a C1 and a ∈ C, then there is a profile �′

A∈ R such that
C0 �′

a C �′
a C1 and all agents’ �′

A-preferences between pairs of coalitions not
including C are the same as their �A-preferences.

R2. (i) For any �A∈ R and two different coalitions C�C1, there is a profile
�′
A∈ R such that C ≺′

a C1 for all a ∈ C ∩C1 and all agents’ �′
A-preferences be-

tween pairs of coalitions not including C are the same as their �A-preferences.
(ii) For any �A∈ R, any agents a�b, and any three different coalitions

C0�C�C1, if C0 ≺a C ∼b C1, then there is a profile �′
A∈ R such that C0 ≺′

a C ≺′
b

C1 and all agents’ �′
A-preferences between pairs of coalitions not including C

are the same as their �A-preferences.
The assumptions R1 and R2 formalize the requirement that there is substan-

tial variability, or richness, among preference profiles. Assumption R1 requires
that for any preference profile in R and any coalition C, there is a (shocked)

16The marriage problem is a well known special case of many-to-one matching defined by
Mf = 1 for all f ∈ F . While the marriage problem does not satisfy assumptions C2 and C3, we
exclude it primarily for the sake of simplicity of exposition: the equivalence between stability and
the pairwise alignment obtains for the marriage problem. The pairwise alignment of preferences
is satisfied for the marriage problem in a trivial way, and Gale and Shapley (1962) showed that the
marriage problem always admits a stable matching (coalition structure). On the other end of the
matching literature, many-to-many matching, in general, is not a coalition formation problem.
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preference profile in R in which C is ranked just below another coalition C1

by the relevant agent. Assumption R2(i) postulates the existence of a shocked
profile in which a coalition C is ranked below another coalition C1 by all rel-
evant agents. Assumption R2(ii) postulates that there is a shocked profile in
which an indifference is broken; this last assumption is trivially satisfied if
agents’ preferences are always strict.

Examples of rich preference domains include the domain of preference pro-
files generated in equal sharing and Nash bargaining when we vary output func-
tions y : C → (0�∞). The domain of profiles generated in Kalai–Smorodinsky
bargaining is rich provided each agent’s utility is unbounded above or pro-
vided each agent’s utility is bounded above; the Kalai–Smorodinsky domain
might fail condition R1 if some agents’ utilities are unbounded, while others
are bounded. More generally, consider a setting in which agents’ payoffs are
determined by a state of nature ω ∈×C∈C ΩC and the payoffs in coalition C
depend only on the C-coordinate of the state of nature. For each coalition
C and agent a ∈ C, consider a payoff mapping Dpayoff

a�C from ΩC to payoffs of
agent a. Then R1 is satisfied as long as the set of outcomes Dpayoff

a�C (ΩC) does
not depend on coalition C, but only on agent a. Assumption R2 is satisfied if
we additionally require that for each C ∈ C , the setΩC is an open interval in R,
and the payoff mapping is continuous and strictly monotonic. Other examples
satisfying both R1 and R2 include the domain of all strict preference profiles
and the domain of all preference profiles.

Assumption R1 is used to show that pairwise alignment is sufficient for sta-
bility, and assumption R2 is added to show that pairwise alignment is nec-
essary for stability. To see that the relationship between stability and pairwise
alignment needs some assumptions on the domain of preferences, recall Kalai–
Smorodinsky bargaining from Section 2. In stateω2, there is no stable matching
even though, in this state, the pairwise alignment holds. At the same time, in
state ω1 the pairwise alignment fails even though, in this state, there is a sta-
ble matching. The next section and the Supplemental Material (Pycia (2012))
provide more details on the role of assumptions C1–C3, R1, and R2.

4. MAIN RESULTS: STABILITY IN PREFERENCE DOMAINS

Our main existence results are the following theorems.

THEOREM 1: Suppose that the family of coalitions C satisfies C1 and C2, and
that the preference domain R satisfies R1. If all preference profiles in R are pair-
wise aligned, then (i) all �A∈ R admit a stable coalition structure and (ii) the
stable coalition structure is unique for any profile of strict preferences �A∈ R that
is pairwise aligned over the grand coalition.

THEOREM 2: Suppose that the family of coalitions C satisfies C1 and C3, and
that the preference domain R satisfies R1 and R2. If all profiles from R admit
stable coalition structures, then all profiles from R are pairwise aligned.



336 MAREK PYCIA

Theorem 1 relies on part R1 of the richness assumption. To develop an un-
derstanding of the role of this assumption, let us look again at the failure of sta-
bility under the Kalai–Smorodinsky sharing rule from Section 2. Theorem 1 im-
plies that the preference profile �{f�g�1�2} of agents using the Kalai–Smorodinsky
rule to share outputs in state ω2 cannot be embedded in an R1-rich domain of
pairwise-aligned preference profiles. To check this corollary, notice that if this
profile belonged to an R1-rich domain of pairwise-aligned profiles, then there
would exist a pairwise-aligned profile �′

{f�g�1�2} such that

{f�1} �′
f {f�1�2} �′

f {f�2}�
and all agents’ �′

{f�g�1�2}-preferences between pairs of coalitions not including
C = {f�1�2} would be the same as their �{f�g�1�2}-preferences. Then the pair-
wise alignment of �′

{f�2} would imply that {f�1�2} �′
2 {f�2} ≺′

2 {g�1�2}, and the
transitivity of �′

2 and the pairwise alignment of �′
{1�2} would give

{f�1�2} ≺′
1 {g�1�2} ≺′

1 {f�1}�
However, then the �′

{f�1}-preferences of agents 1 and f between coalitions
{f�1�2} and {f�1} would violate pairwise alignment. This contradiction shows
that �{f�g�1�2} cannot be embedded in any R1-rich domain of pairwise-aligned
preferences.

The first step of the proof of Theorem 1 generalizes the above argument
to show that the pairwise alignment, R1, C1, and C2 imply that there are no
3-cycles for any �A∈ R. A 3-cycle or, generally, an n-cycle is any configura-
tion of proper coalitions C1� � � � �Cn and agents a1� � � � � an such that (subscripts
modulo n)

Ci �ai Ci+1 for i= 1� � � � � n� with at least one preference strict.(1)

For instance, the Section 2 discussion of the Kalai–Smorodinsky rule shows
that in state ω2, coalitions {g�1�2}� {f�1}� {f�2} form a 3-cycle.

The main step of the proof uses the lack of 3-cycles, R1, and C1 to show that
lack of n-cycles implies lack of (n+ 1)-cycles, and hence that there are no n-
cycles for n= 2�3� � � � � The final step of the proof is to observe that the lack of
n-cycles implies both the existence and—with the added assumptions of strict
preferences and pairwise alignment over the grand coalition—the uniqueness
of stable coalition structure. The uniqueness relies on the added assumptions.
For instance, if |A| ≥ 3 and C = {C ⊆ A�C �= ∅}, then there is a domain of
pairwise-aligned profiles that contains a strict preference profile that (i) is not
pairwise aligned over the grand coalition and (ii) allows both the grand coali-
tion A and a coalition structure of proper coalitions to be stable.

The proof of the necessity of pairwise alignment (Theorem 2) roughly re-
verses the steps of the proof of its sufficiency. First, assuming R2, we show
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that stability implies lack of 3-cycles C1�C2�C3 such that Cj ∩ Ci are single-
tons for j �= i. Then, assuming C1, C3, and R1, we show that the lack of
such 3-cycles implies pairwise alignment. To get a sense of this proof, con-
sider the preference profile that obtains in state ω1 when agents share out-
puts in Kalai–Smorodinsky bargaining and assume that the environment con-
tains a third worker, 3. Since agents f and 1 differ in their preference ranking
of coalitions {f�1} and {f�1�2}, Theorem 2 implies that this preference pro-
file cannot be embedded in a rich domain of stability-inducing profiles. Let us
check this claim directly under an additional assumption that all preference
profiles are strict. Any domain satisfying R1 and R2(ii), and containing the ω1-
profile contains a preference profile �A such that {f�1} ≺f {f�3} ≺f {f�1�2}
and {f�1�2} ≺1 {g�1�3} ≺1 {f�1}. Consider the case {f�3} ≺3 {g�1�3}; the other
case is symmetric. In this case, {f�3} ≺3 {g�1�3} ≺1 {f�1} ≺f {f�3} is a 3-cycle.
Because of R2(i), we may assume that members of coalitions {f�3}, {g�1�3},
and {f�1} strictly prefer them to any coalition other than these three. Any sta-
ble coalition structure would then need to contain one of these three coalitions,
but each one of them is blocked by one of the other two. Hence, there is no
stable coalition structure.

The Appendix gives the proofs and the Supplemental Material discusses the
trade-offs involved in relaxation of the assumptions. For instance, regularity
assumption C2 may be dropped in Theorem 1 at the cost of replacing pairwise
alignment with lack of 3-cycles. In some problems, such as many-to-one match-
ing, the richness assumptions may be relaxed to take account of the additional
structure of such problems. The results hold true for other stability concepts
such as pairwise stability and group stability in many-to-one matching. Finally,
the above map of the proofs implies that no preference profile in a rich domain
of pairwise-aligned profiles admits an n-cycle. The Supplemental Material also
demonstrates that every profile that does not admit n-cycles may be embedded
in a rich domain of pairwise-aligned profiles.

5. APPLICATIONS: SHARING RULES

This section applies the existence results of the previous section to an anal-
ysis of stability-inducing sharing rules. As in Section 2, we look at instances
of our general setup in which each coalition produces output y(C) ∈ R+ =
[0�+∞). The mapping from coalitional outputs to agents’ preferences is deter-
mined by a sharing rule. A sharing rule is a collection of functions Da�C :R+ →
R+, one for each coalition C and each of its members a ∈C, that map the out-
put of C into the share of output obtained by agent a. We denote the sharing
rule given by functions Da�C as D = (Da�C)C∈C�a∈C . We assume that the shares
are feasible,

∑
a∈C Da�C(y) ≤ y .17 A sharing rule is pairwise aligned if the pref-

17Embedded in this assumption is the idea that transfers between members of a coalition are
costless. Corollary 1 remains true when the transfers are costly.
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erence profiles that it generates are pairwise aligned for every profile of out-
puts. In Section 2 we have seen two examples of pairwise-aligned sharing rules
(equal sharing and Nash bargaining) and one instance of a sharing rule that
violates pairwise alignment (Kalai–Smorodinsky).

Theorems 1 and 2 imply the following corollary.

COROLLARY 1: Suppose that the family of coalitions C satisfies C1–C3 and
the functions Da�C are strictly increasing and continuous, and limy→+∞Da�C(y)=
+∞ for all C ∈ C� a ∈C. Then there is a stable coalition structure for each profile
of outputs if and only if the sharing rule D is pairwise aligned.

For instance, in the environment of Section 2, the assumptions of the corol-
lary are satisfied by all three sharing rules. To prove the corollary, first notice
that the pairwise alignment yields stability because the domain of preference
profiles generated by D satisfies R1 and hence Theorem 1 is applicable. Sec-
ond, to prove the converse implication, notice that the restriction of the shar-
ing ruleD to profiles of strictly positive outputs satisfies R1 and R2, and hence
Theorem 2 implies that agents’ preferences over coalitions with strictly positive
outputs are pairwise aligned. This implies that D is pairwise aligned because
all agents strictly prefer any coalition with strictly positive output to any coali-
tion with zero output, and are indifferent between any two coalitions with zero
output (because Da�C(y)= 0 iff y = 0 for every C ∈ C� a ∈C).

5.1. Pareto-Efficient Sharing Rules: A Characterization

A sharing rule is Pareto-efficient if
∑

a∈C Da�C(y)= y for any C ∈ C and y ≥ 0.
The equal sharing and Nash bargaining are efficient. Efficient pairwise-aligned
sharing rules may be characterized as follows.

PROPOSITION 1: Suppose that the family of coalitions C satisfies C1 and C2,
and the functions Da�C are strictly increasing and continuous, and
limy→+∞Da�C(y) = +∞ for all C ∈ C� a ∈ C. The sharing rule D is pairwise
aligned and efficient if and only if there exist increasing, differentiable, and strictly
log-concave functions Ua :R+ →R+, a ∈A, such that Ua

U ′
a
(0)= 0 and

(Da�C(y))a∈C = arg max∑
a∈C sa≤y

∏
a∈C
Ua(sa)� y ∈R+�C ∈ C − {A}�

In the proposition, we allow U ′
a(0)= +∞. We refer to functions Ua as bar-

gaining functions. In Nash bargaining these are simply agents’ utility (or profit)
functions. An inspection of the proof shows that the representation remains
true if C equals the grand coalition A provided that A ∈ C and agents’ pref-
erences are additionally pairwise aligned over the grand coalition. In what fol-
lows, we use the term regular sharing rule to refer to sharing rules which are
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aligned over the grand coalition, and such that all functions Da�C are strictly
increasing and continuous, and limy→+∞Da�C(y) = +∞. In addition, as illus-
trated at the end of the next subsection, the main thrust of the result remains
true when we drop the efficiency assumption.18

The above results imply the following corollary

COROLLARY 2: Suppose that the family of coalitions C satisfies C1–C3 and
the sharing rule D is regular. There is a stable coalition structure for each prefer-
ence profile induced by the sharing rule if and only if there exist increasing, dif-
ferentiable, and strictly log-concave functions Ua :R+ → R+, a ∈ A, such that
Ua
U ′
a
(0)= 0 and

(Da�C(y))a∈C = arg max∑
a∈C sa≤y

∏
a∈C
Ua(sa)� y ∈R+�C ∈ C − {A}�

As an illustration of the above characterization results, consider a linear
sharing rule

Da�C(y)= da�Cy�
where shares da�C are positive constants such that

∑
a∈C da�C = 1. Corollary 1

implies that the linear sharing rule admits stable coalition structures in all
states of nature if and only if the shares da�C satisfy the proportionality con-
dition

da�C

db�C
= da�C′

db�C′

for all C�C ′ �= A and a�b ∈ C ∩ C ′.19 This observation may be rephrased in
terms of Nash bargaining. Nash bargaining leads to linear sharing of value
if agents’ utilities are Ua(s) = sλa for some agent-specific constants (bargain-
ing powers) λa. The resulting shares satisfy the above proportionality condi-
tion, and any profile of shares {di�C}C∈C−{A} that satisfies the proportionality
condition may be interpreted as generated by Nash bargaining. Thus, a pro-
file of shares {di�C}C∈C−{A} guarantees the existence of stable matching for all
y : C →R+ if and only if the shares can be represented as an outcome of Nash
bargaining.

18Proposition 1 extends the main insight of Lensberg (1987) to many-to-one matching and
other environments satisfying C1 and C2. Lensberg constructed a representation resembling that
of Proposition 1 for consistent and efficient sharing rules; consistency and pairwise alignment of
sharing rules are closely related as discussed in footnote 5. The results are logically independent
even in a one-sided coalition formation setting.

19In the context of one-sided coalition formation, Banerjee, Konishi, and Sönmez (2001)
proved a slightly weaker variant of one of the above implications: assuming the proportional-
ity condition for all coalitions C�C ′, they showed that a stable coalition structure exists. The
converse implication is new.
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5.2. Assortative Matching and Coalition Formation

When shares are divided by a stability-inducing sharing rule, agents sort
themselves into coalitions in a predictably assortative way. Let us start by look-
ing at Nash bargaining in which each agent a is endowed with an increasing,
concave, and differentiable utility function Ua normalized so that Ua(0) = 0.
In this setting, agents sort themselves into coalitions according to their fear of
ruin and their productivity. Recall that Aumann and Kurz’s (1977) fear-of-ruin
coefficient is defined as Ua(s)

U ′
a(s)

. We say that agent a has weakly higher fear of ruin

than agent b if Ua(s)

U ′
a(s)

≥ Ub(s)

U ′
b
(s)

for all s > 0, and agent a has strictly higher fear of
ruin if strict inequality holds for all s > 0.

We assume that each agent a ∈A is endowed with productivity type θa from
a spaceΘ of types, and the output y(C) is fully determined by the size of C and
productivity types of members of C. In particular, if Ca and Cb = Ca ∪{b}− {a}
are coalitions and θa = θb, then y(Ca) = y(Cb). We further assume that the
space Θ is endowed with a partial ordering on types, and that the output is
strictly increasing in the partial ordering on θa ∈Θ (keeping productivity types
of agents in C − {a} constant). Finally, we assume that the family of coalitions
is symmetric, that is, for any agents a and b who are on the same side of the
market, if a coalition C contains a but not b, then (C ∪ {b})−{a} is a coalition.
We say that two agents are on the same side of the market if both are workers
or if both are firms.

In this environment, the resulting stable coalition structure is assortative:
agents with high productivity and high fear of ruin form coalitions together.
Proposition 2 formalizes this statement.

PROPOSITION 2: Assume that the family of coalitions is symmetric and that the
outputs are increasing in agents’ productivity. Let C1 and C2 belong to the same
stable coalition structure, and let agents a1� b1 ∈ C1 and a2� b2 ∈ C2 be such that
a1 and a2 are on the same side of the market and b1 and b2 are on the same side
of the market. If a1 is weakly more productive and has weakly higher fear of ruin
than a2, with at least one of the relations being strict, then it is not possible that b2

is weakly more productive and has weakly higher fear of ruin than b1, with at least
one of the relations being strict.

PROOF: The proof is by a straightforward indirect argument. Assume that
there are coalitions C1�C2 and agents a1� a2� b1� b2 that falsify the proposition.
Recall from the analysis of Nash bargaining in Section 2 that the fear of ruin
coefficient χ takes a common value χC1 for all agents in C1 and a common
value χC2 for all agents in C2, and that agents always prefer coalitions with
higher χ. Because of the symmetry between assumptions on C1 and C2, we
may assume that χC1 ≥ χC2 . Moreover, by symmetry of the family of coalitions,
C = (C1 − {b1}) ∪ {b2} is a coalition. Since b2 is more productive and more
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risk averse than b1, with at least one of the relations being strict, we must have
χC > χC1 . Because agents’ preferences over coalitions are aligned with χ, all
agents in C ∩C1 prefer it to C1 and agent b1 prefers C to C2. Thus, C would be
a blocking coalition, a contradiction. Q.E.D.

As an example of an application of Proposition 2, consider the case of agents
endowed with identical utility functions who differ in their productivity types
θa ∈ Θ. Such agents sort themselves in terms of productivity. This case of
Proposition 2 generalizes the main result of Farrell and Scotchmer (1988).20

As another example, consider the case when y(C) depends on C only
through its cardinality |C| and agents have power utilitiesUa(s)= sλa . Then the
coefficients λa can be interpreted as agents’ bargaining powers and the result
says that agents sort themselves on bargaining powers: for any two coalitions in
the stable coalition structure, the largest bargaining power of a worker in one
of them is weakly lower than the smallest bargaining power of a worker in the
other coalition and similarly for firms. In particular, the assortative structure
implies that the differences among bargaining powers of agents within a coali-
tion of a stable coalition structure are suppressed relative to the differences of
bargaining powers among all agents.

Provided the coalition structure satisfies C1–C3, the assortative structure of
Proposition 2 remains true for all stability-inducing and efficient sharing rules
characterized in Corollary 1 and Proposition 1. Proposition 1 allows us to de-
fine analogs of Ua for all such sharing rules, and the above proof of Propo-
sition 2 extends to the more general case without any changes. Furthermore,
the assortative structure remains true for all stability-inducing sharing rules
if—in addition to agents’ impact on productivity—we explicitly account for
agents’ impact on the inefficiency. This is so because the inefficient sharing
rules can be viewed as dividing the effective output (defined as the sum of
agents shares) in an efficient way. Proposition 1 allows us thus to find the
bargaining functions for the induced efficient sharing rule and, productivity
and inefficiency factors held constant, agents sort themselves according to the
fear-of-ruin coefficient of their bargaining functions. Finally, if the fear-of-ruin
coefficients of two bargaining functions Ua and Ub are not comparable be-
cause the relationship between Ua

U ′
a
(s) and Ub

U ′
b
(s) depends on the stake s, then

agents still sort themselves according to their fear of ruin calculated at relevant
stakes.

20Farrell and Scotchmer analyzed the equal-sharing rule (which corresponds to assuming all
agents are endowed with identical utility functions) and imposed a linear relationship between
outputs and one-dimensional productivity types.
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5.3. Comparative Statics: How Equality Among Members of a Coalition
Increases the Chances the Coalition Is Stable

This subsection examines how the probability that any given coalition L is in
a stable coalition structure depends on the sharing rule.21 We assume that out-
puts y(C) are independently drawn from absolutely continuous log-concave
distributions on R+. Log concavity means that the logarithm of the cumula-
tive distribution function (c.d.f.) is concave and is equivalent to a monotone
hazard rate condition. Many of the distributions studied in economics, includ-
ing the uniform distribution on [0�1] and the exponential distribution, satisfy
this property. We allow the distribution of y(C) to depend on C through its
cardinality |C| but not otherwise. Finally, we impose the following symmetry
assumption on the family of coalitions: for any workers a and b, if a coalition
C contains a but not b, then (C ∪ {b})− {a} is a coalition.

Under these assumptions, the equal-sharing rule maximizes the probability
the grand coalition A is stable. An analogous claim holds true for any other
coalition L �=A, but its formulation requires some care. There are two forces
that increase the probability that L �=A belongs to a stable coalition structure:
equality among workers in L and the relative bargaining strength of members
of L when compared to other agents. The probability of L being stable is maxi-
mized as we approach the limit in which workers in L share the output equally,
but would get nothing in any coalition containing an agent from A−L. Since
no regular sharing rule accomplishes this limit, we prove the maximal property
of equal sharing while controlling for the relative strengths of members of L
vis-à-vis other agents.

PROPOSITION 3: Assume that the family of coalitions C is symmetric and satis-
fies C1–C3, that L is a coalition, and that outputs y(C) are independently drawn
from size-dependent log-concave distributions on R+. There is a partition of the
class of stability-inducing, efficient, and regular sharing rules such that each el-
ement of the partition contains a unique sharing rule D that equalizes shares of
workers in L for all output levels, and the probability of L being stable under D
is weakly higher than under any other sharing rule from the element of the parti-
tion (and strictly higher if the distributions are strictly log concave). In particular,
if L=A� then the equal-sharing rule maximizes the probability of A being stable
among all stability-inducing, efficient, and regular sharing rules.

The proof of Proposition 3 allows us to construct a partial ordering on all
stability-inducing efficient sharing rules, such that the probability of L being

21We study regular sharing rules. For such rules, the probability of a particular coalition struc-
ture is well defined when y(C) are drawn from continuous distributions because Theorem 1 im-
plies that the stable coalition structure is generically unique when the sharing rule is regular,
and it is easy to extend the argument to conclude that in the current setting it is unique with
probability 1.
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stable is increasing in the partial ordering. In lieu of a heuristic of the proof,
let us look at such an ordering, restricting attention to the following class of
linear sharing rules: each agent a is endowed with bargaining power λa > 0,
and coalition C divides output y so that the share of agent a is

Da�C(y)= λa∑
b∈C
λb
y�

The probability of coalition L forming is then decreasing in inequality among
bargaining powers of workers in L. Denote by λ(i) the ith highest value of λw
among workers w ∈ L. We keep the bargaining powers of firms and of agents
not in L proportional to

∑
w∈L∩W λw and assess the inequality among workers

in L with the partial order

(λw)w∈L∩W ≥ (λ′
w)w∈L∩W

⇐⇒ λ(i)

λ(i+1)
≥ λ′

(i)

λ′
(i+1)

� i= 1� � � � � |L∩W |;

the ordering is strict if at least one of the above inequalities is strict.

PROPOSITION 4: Assume that the family of coalitions is symmetric and that
outputs y(C) are independently drawn from size-dependent log-concave distribu-
tions on R+. Then the probability that the coalition L is stable is decreasing in the
above-defined partial order on the profiles of bargaining powers. The probability is
strictly decreasing if output distributions are strictly log-concave on R+.

Let us sketch the proof for the case of L = A. The Appendix gives omit-
ted parts of the argument. First note that rescaling all bargaining powers by a
constant changes neither the ordering nor agents’ payoffs, and hence we may
assume that

∑
a∈A λa = ∑

a∈A λ
′
a. Assume that there are two workers, say a and

b, whose bargaining powers differ, λa < λb. Take any coalition C. If a�b ∈C or
a�b /∈ C, then a small increase in λa and an offsetting decrease in λb that keeps
the sum of the two powers constant does not change the probability that A is
blocked by C. If a ∈ C but b /∈C, then C∪{b}−{a} is a coalition by the symme-
try of the family of coalitions, and we use the log-concavity of the distributions
to show that the above adjustment of the two bargaining powers decreases the
joint probability that A is blocked. Hence, the above adjustment of bargain-
ing powers increases the product of probabilities that A is not blocked by any
coalition and, hence, the probability that A is stable. To conclude the proof,
we then show that if one profile of bargaining powers is dominated by another
in the above partial ordering, then there is a finite sequence of adjustments of
bargaining powers that connects the two.
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An analogous argument shows that the more equal the sharing among a
group of workers, the more likely they are to be in the same coalition in the
stable matching or coalition structure.

6. APPLICATIONS: MATCHING

6.1. Complementarities in Matching

The results of the preceding sections are applicable to many-to-one match-
ing situations with complementarities and peer effects. In the example of Sec-
tion 2, we have seen that in state ω2, firm g but not firm f treats workers 1
and 2 as complementary both under equal sharing and Nash bargaining, and
that each worker cares whether the other one works for the same firm. In gen-
eral, under equal sharing or Nash bargaining, the firm’s preferences may treat
two or more workers as complementary depending on the profile of outputs
y. The peer effects are inherent to both equal sharing and Nash bargaining:
workers care about which other workers belong to their coalition.

The presence of complementarities means that some of the standard com-
parative statics derived in the theory of many-to-one matching under the stan-
dard assumptions of gross substitutes and absence of peer effects no longer
hold true.22 A major standard comparative static result says that removing an
agent from one side of the market weakly increases the payoffs of the other
agents on the same side of the market and weakly decreases payoffs of agents
on the other side (Crawford (1991)). In contrast, even if we assume that agents’
payoffs are determined in equal sharing or in Nash bargaining and that the sta-
ble matching is unique, removing a worker may lead to a change of the stable
matching that results in some firms obtaining higher payoffs and some workers
obtaining lower payoffs. For instance, consider equal sharing in state ω2 of the
example in Section 2. The unique stable matching is {{f }� {g�1�2}} when all
agents are available and {{f�2}� {g}} when worker 1 is not available. Thus, firm
f benefits and worker 2 loses when worker 1 is removed. Similarly, removing
a firm may increase the payoffs of some workers and decrease the payoff of
some firms as illustrated below.

EXAMPLE 2: Consider three firms f1� f2� f3 and two workers w1�w2. Assume
that agents share outputs equally, and that the outputs are such that

y({f1�w1})= 2� y({f2�w2})= 1� y({f3�w1�w2})= 2�

22We consider only many-to-one matchings that satisfy C2: any firm and any two workers can
form a coalition together. For the purposes of our discussion, this is not a strong restriction,
as complementarities and peer effects can be present only in many-to-one matching situations in
which some firms can be matched with two (or more) workers. By Theorem 1, the stable matching
is unique in our setting if we adapt the standard assumption that agents’ preferences are strict.
The uniqueness implies that the lattice structure of the set of stable matchings (Gale and Shapley
(1962)) and the so-called rural hospital theorem (Roth (1984)) are true in our setting. As usual,
the properties are not true when indifference is allowed.
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and all other outputs equal zero. The unique stable matching is {{f1�w1}� {f2�
w2}� {f3}} when all agents are available and {{f2}� {f3�w1�w2}} when firm f1 is
not available. Thus, removing firm f1 decreases the payoff of firm f2 and in-
creases the payoff of worker w2.

Weak versions of the standard comparative statics remain true: it is straight-
forward to check that adding a worker weakly improves the payoff for at least
one firm and adding a firm weakly improves the payoff for at least one worker.

6.2. Implementation and Strategic Play

Under the substitutes and absence-of-peer-effects conditions, the Gale and
Shapley (1962) deferred acceptance algorithm produces a stable coalition
structure in a many-to-one matching provided agents act truthfully. However,
agents have incentives to be strategic and in equilibrium, the outcome of the
deferred acceptance algorithm does not need to be stable (Dubins and Freed-
man (1981), Roth (1982), and Ma (2010)). At the same time, there are non-
cooperative games that implement the core stable correspondence (Kara and
Sönmez (1997)). The stability of the outcome of coalition formation thus de-
pends on the details of the non-cooperative game agents play.23 The following
result shows that under pairwise alignment, the details of the process of coali-
tion formation are less important.

PROPOSITION 5: Consider a non-cooperative game (extensive or normal form)
among agents from A and a mapping μ̂ from agents’ strategies Σ to coalition
structures such that for each coalition C ∈ C there is a profile of strategies σC of
agents in C such that C ∈ μ̂(σ) for all strategy profiles σ ∈ Σ that agree with
σC on C. If the family of coalitions satisfies C1 and C2, and agents’ preferences
come from a rich domain of pairwise-aligned preference profiles, then for every
stable coalition structure μ, there is a Strong Nash Equilibrium σ such that μ=
μ̂(σ).24,25

23The non-cooperative game agents play is less important in one-to-one matching as shown
by Ma (1995), Shin and Suh (1996), and Sönmez (1997). One-to-one matching satisfies both the
pairwise-alignment condition and the substitutes and absence-of-peer-effects conditions.

24We are implicitly assuming that each agent’s payoff is uniquely determined by the coalition
in μ̂(σ) that the agent belongs to. A profile of players’ strategies σ is a strong Nash equilibrium
if there does not exist a subset of players that can improve the payoffs of all its members by a
coordinated deviation, while players not in the subset continue to play strategies from σ (Aumann
(1959)). Similar results are true for the strong perfect equilibrium of Rubinstein (1980) and the
coalition-proof Nash equilibrium of Bernheim, Peleg, and Whinston (1987).

25In Proposition 5, we can replace the pairwise alignment and assumptions C1 and C2 with
the assumption that there are no cycles in agentsŠ preferences over proper coalitions. Recall that
when the family of coalitions satisfies C1–C3 and the domain of preferences is rich, the pairwise
alignment is equivalent to the no-cycle assumption. Niederle and Yariv (2009) further develop the
theory of games implementing stable one-to-one matchings when preferences satisfy the no-cycle
assumption.
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The coalition formation game based on the Gale and Shapley deferred ac-
ceptance algorithm satisfies the assumption of Proposition 5 as does the single-
round-of-application game in which each worker applies for one or no jobs and
then each firm selects its workforce from among its applicants.

Proposition 5 relies on the alignment of agents’ preferences but not on
the many-to-one structure. The converse claim that any strong Nash equi-
librium gives a stable coalition structure is straightforward and does not re-
quire any assumptions on preferences. Thus, the proposition implies that when
agents’ preferences are aligned, then the core correspondence is implemented
in strong Nash equilibrium (and hence partially implemented in Nash equilib-
rium) of any game from the broad class of non-cooperative games described in
the proposition.

7. CONCLUDING REMARKS

We have seen which sharing rules and, more generally, which preference
domains guarantee the existence of stable coalition structures, and we have
analyzed properties of such sharing rules and preference domains. Let us con-
clude by a preliminary look at how the results of this paper can be applied
toward market design and the study of holdup.

7.1. Sharing Rules as an Instrument of Market Design

Having established the importance of stability, the literature on the design of
matching markets that follows Roth (1984) has been primarily concerned with
algorithms used in the matching process. The algorithm used in the centralized
matching is a primary tool to achieve stability, but it is not the only one.

For instance, consider the well studied environment in which stability mat-
ters: the matching between residents and U.S. hospitals described by Roth
(1984) and Roth and Peranson (1999). The matching is organized by the Na-
tional Resident Matching Program (NRMP), which represents several medi-
cal, medical education, and medical student organizations. The NRMP plays
the role of a social planner and wants the resulting matching to be stable be-
cause the lack of stability has historically led to the unraveling of the resident–
hospital matching process. The main instrument used by the NRMP to achieve
stability is the matching algorithm. However, the medical and medical edu-
cation organizations that formed NRMP also regulate the residency system
in other ways; the regulations influence residents’ and hospitals’ payoffs, and
they affect the stability of the matching. For instance, through the Accredita-
tion Council for Graduate Medical Education, the organizations recently en-
acted regulations limiting residents’ working hours. The regulations affected
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payoffs both for residents and for hospitals’ faculty.26 The regulations resemble
sharing rules, or preference domains, in that they influence the mapping from
states of nature—which are ex ante unknown to the medical organizations—
to the payoffs of match participants. While our model lacks the institutional
detail required for direct application to residency matching, its results may be
viewed as a step toward understanding what tools—other than the matching
algorithm—may be employed to achieve stability in matching markets.

7.2. Holdup

Inflexible sharing of output leads to holdup in coalition formation. For in-
stance, consider the setting in which agents share output in Nash bargaining
with constant bargaining powers. An agent may be better off with a lower
rather than higher bargaining power—other things held equal—when a low
bargaining power allows him or her to form a highly productive coalition, while
a high bargaining power makes formation of such a productive coalition impos-
sible by lowering the payoffs of its other members below their outside options.
In a related matter, the stable coalition structure does not necessarily maxi-
mize the sum of agents’ payoffs. Both of these problems illustrate the holdup
inherent in any model in which the anticipated sharing of output is fixed at the
matching stage and agents cannot make side payments or contract on them
when forming coalitions.

The holdup caused by inflexible sharing of payoffs is far from a solely theo-
retical possibility. For instance, Baker, Gibbons, and Murphy (2008) reported
that interviews with practitioners involved in the formation of alliances (coali-
tions) among firms led them to conclude that the lack of flexibility in dividing
payoffs that accrue directly to firms in an alliance—rather than to the alliance
itself—is one of two main factors determining the form and performance of
alliances (the second main factor being governance structure). In what they
heard from practitioners, the inflexible sharing of payoffs played a markedly
larger role than the inadequate specific investments identified as a source of
holdup by Grossman and Hart (1986) and Hart and Moore (1990), and stud-
ied by the rich literature on the theory of the firm.

APPENDIX: PROOFS

LEMMA 1: Let �A be a preference profile such that the coalition structure μ �=
{A} is stable and let �′

A be a preference profile such that

C �′
a C

′ ⇐⇒ C �a C
′

26The majority of residents surveyed by Niederee, Knudtson, Byrnes, Helmer, and Smith
(2003), and Brunworth and Sindwani (2006) supported the restriction, while the majority of
teaching hospitals’ faculties opposed it.
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for a ∈ C�C ′ ∈ C − {A}. Then either {A} or μ is stable with respect to �′
A.

Moreover, if μ is the unique �A-stable coalition structure and C �a A for any
a ∈ C ∈ C , then there are no �′

A-stable coalition structures other than μ and {A}.

PROOF: Take any �A-stable coalition structure μ. Let μ(a) denote the coali-
tion of agent a in coalition structure μ. Because �′

A is equivalent to �A on
C −{A}, no coalition other thanA can �′

A-block μ. Thus, either μ is �′
A-stable

or is �′
A-blocked by A. In the latter case,

A�′
a μ(a) for a ∈A�

Now, if {A} were not �′
A-stable, then there would be a coalition C �=A such

that

C �′
a A for a ∈ C�

The two displayed preferences would then imply that C �′
a μ(a) and hence

C �a μ(a) for a ∈ C� contrary to stability of μ. Thus, if μ is not �′
A-stable,

then A is. The uniqueness claim is straightforward. Q.E.D.

LEMMA 2: If there are no n-cycles for any n = 3�4� � � � � then there is a stable
coalition structure.27

PROOF: By Lemma 1, to show that lack of n-cycles for any n= 3�4� � � � im-
plies that there is a stable coalition structure, it is enough to prove this claim
under the additional assumption that eitherA /∈ C orA is the �A-worst choice
for each agent. We proceed by induction with respect to |A|. For |A| = 1, the
claim is true. For the inductive step, assume that the claim is true whenever the
number of agents is less than |A|. By way of contradiction, let us also assume
that there is no stable coalition structure on A. Then, for any coalition C ∈ C ,
there must exist a proper coalition C ′ that blocks C, that is, C ∩C ′ �= ∅ and all
agents a ∈ C ∩ C ′ strictly prefer C ′ to C. Indeed, if there were a coalition C

27The proof shows something more: if there are no n-cycles, n= 3�4� � � � � in which all agents
in Ck ∩ Ck+1 strictly prefer Ck+1 to Ck, then there is a stable coalition structure. Also, since lack
of n-cycles implies lack of k-cycles for all k ≤ n, Lemma 2 shows that if there are no n-cycles
for odd integers n ≥ 3, then there is a stable coalition structure. For the roommate problem,
Lemma 2 follows from Chung’s (2000) “no-odd-rings” condition; however, his proof relies on
the structure of the roommate problem. Lemma 2 also strengthens a result from Farrell and
Scotchmer (1988): they assumed the existence of a complete ordering on all coalitions that satisfy
an equivalence counterpart of implication (3) from the proof of Lemma 5 below, and showed
that there exists a stable coalition structure. Banerjee, Konishi, and Sönmez (2001) relaxed the
Farrell and Scotchmer ordering condition to a requirement that among the coalitions formed by
any subset of agents, there is a “top” coalition that is preferred by its members to all alternatives.
A relaxed version of their top coalition property is true in our setting as shown in the proof of
Proposition 5. Their result is logically independent of Lemma 2.
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that is not blocked, then the following coalition structure would be stable: C
and coalitions that form a stable structure onA−C. Hence every coalition can
be blocked. Let us thus start with coalition C1 and find a proper coalition C2

that blocks C1� then find a proper coalition C3 that blocks C2, and so forth.
Since there is a finite number of coalitions in C and all are proper, there is an
n-cycle. Moreover, nmust be larger than 2, as C2 cannot be blocked by C1. This
contradiction completes the proof. Q.E.D.

LEMMA 3: Let C satisfy C1 and C2, and let R satisfy R1. If all profiles in R are
pairwise aligned, then no profile in R admits a 3-cycle.

PROOF: By way of contradiction, assume that there are proper coalitions
C1�2�C2�3�C3�1 and agents a1� a2� a3 such that

C3�1 ≺a1 C1�2 �a2 C2�3 �a3 C3�1�

Assumption C1 and pairwise alignment imply that at least two of the agents
a1� a2� a3 are workers, and then C2 implies the existence of an agent a0 and
proper coalitions C ′

1�2�C
′
2�3�C

′
3�1 such that C ′

k�k+1  ak�ak+1 and a0 ∈ C ′
1�2 ∩C ′

2�3 ∩
C ′

3�1.
If C ′

1�2 = C ′
2�3, then we can assume that C ′

1�2 = C ′
2�3 = C ′

3�1 = C ′. We obtain
a contradiction in the same way as in the analysis of the Kalai–Smorodinsky
example presented after the statement of Theorem 1.

If C ′
1�2, C ′

2�3, and C ′
3�1 are all different, then R1 implies that there is a pairwise-

aligned profile �′
A such that

C3�1 �′
a1
C ′

1�2 �′
a1
C1�2�(2)

C1�2 �′
a2
C ′

2�3 �′
a2
C2�3�

C2�3 �′
a3
C ′

3�1 �′
a3
C3�1�

and all agents’ �′
A-preferences between pairs of coalitions not including C ′

1�2,
C ′

2�3, and C ′
3�1 are the same as their �A-preferences. Pairwise alignment of �′

A

gives C ′
3�1 �′

a1
C3�1 and thus

C ′
3�1 �′

a1
C ′

1�2�

Similarly

C ′
1�2 �′

a2
C ′

2�3 and C ′
2�3 �′

a3
C ′

3�1�

Because agent a1 strictly prefers C1�2 over C3�1, at least one of the preference
relations in (2) must be strict and thus at least one preference relation above is
strict. Hence, the pairwise alignment implies that

C ′
3�1 �′

a0
C ′

1�2 �′
a0
C2�3 �′

a0
C ′

3�1�
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with at least one preference relation strict, which is a contradiction. Q.E.D.

LEMMA 4: Let C satisfy C1, let R satisfy R1, and let n ∈ {3�4� � � �}. If no profile
in R admits a 3-cycle, then no profile in R admits an n-cycle.

PROOF: For an inductive argument, fix m ≥ 4 and assume that preferences
in R do not admit n-cycles for n= 3� � � � �m− 1. We want to show that prefer-
ences in R do not admit m-cycles. By way of contradiction, assume that there
is �A∈ R that admits an m-cycle Cm�1 �a1 C1�2 �a2 · · · �am Cm�1. Then a1 or a2

is a worker, as otherwise C1 implies that a1 = a2 and

Cm�1 �a1 C2�3 �a3 · · · �am Cm�1

is an (m − 1)-cycle, contrary to the inductive assumption. By symmetry, we
may assume that a1 ∈W . Assumption C1 then implies that there is C such that
a1� a3 ∈C . We consider two cases.

Case C = Ci�i+1 for some i = 1� � � � �m: Look at C1�2�C2�3�C and conclude
from the lack of 3-cycles that one of the following three subcases would obtain.

• C1�2 ≺a1 C = Ci�i+1. Then Ci�i+1 �ai+1 Ci+1�i+2 �ai+2 · · · �am Cm�1 �a1 Ci�i+1

and the last preference is strict because Cm�1 �a1 C1�2 ≺a1 C = Ci�i+1. For the
same reason, i �= 1�m. Thus, there would be an (m− i+ 1)-cycle, contrary to
the inductive assumption.

• C2�3 �a3 C = Ci�i+1. Then Ci�i+1 �a3 C3�4 �a4 · · · �ai Ci�i+1 and the first
preference is strict because C ≺a3 C2�3 �a3 C3�4. For the same reason, i �= 2�3.
Thus, there would be an n-cycle with n= i−2 modm, contrary to the inductive
assumption.

• C ∼a1 C1�2 ∼a2 C2�3 ∼a3 C . Then C �a3 C3�4 �a4 · · · �am Cm�1 �a1 C with at
least one strict preference inherited from the m-cycle Cm�1 �a1 C1�2 �a2 · · · �am

Cm�1. Thus, there would be an (m− 1)-cycle, contrary to the inductive assump-
tion.

Case C �= Ci�i+1 for all i= 1� � � � �m: By R1, there is a pairwise-aligned prefer-
ence profile �′

A∈ R such that all preferences along the m-cycle are preserved
and

Cm�1 �′
a1
C �′

a1
C1�2�

We cannot haveC ≺′
a3
C2�3 for thenC ≺′

a3
C2�3 �′

a3
C3�4 and henceC ≺′

a3
C3�4 �′

a4· · · �′
am
Cm�1 �′

a1
C would be an (m− 1)-cycle. Thus, C �′

a3
C2�3, and

C �′
a1
C1�2 �′

a2
C2�3 �′

a3
C�

The lack of 3-cycles implies that all agents above are indifferent. But then
C �′

a3
C3�4 �′

a4
· · · �′

am
Cm�1 �′

a1
C would be an (m− 1)-cycle with at least one

strict preference inherited from them-cycle Cm�1 �a1 C1�2 �a2 · · · �am Cm�1. This
contradiction completes the proof. Q.E.D.
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LEMMA 5: If preference profile �A has no n-cycles for n= 2�3� � � � � and agents’
preferences are strict, then there is at most one stable coalition structure different
than {A}.

PROOF: Let us define a partial ordering � on proper coalitions as follows:
C � C ′ iff there exists a sequence of proper coalitions Ci�i+1 ∈ C such that C =
C1�2� C

′ = Cm�m+1� and for each i= 2� � � � �m� there is an agent ai ∈Ci−1�i∩Ci�i+1

that weakly prefers Ci�i+1 to Ci−1�i. The relation is strict if for at least one i =
2� � � � �m� all agents a ∈ Ci−1�i ∩ Ci�+1 strictly prefer Ci�i+1 to Ci−1�i. Notice that
all proper coalitions C�C ′ with a nonempty intersection are comparable and

if C � C ′� then C �a C
′ for all a ∈ C ∩C ′�(3)

The relation is transitive by construction. It is also acyclic in the sense of pref-
erence theory: given transitivity, a relation is acyclic if there are no coalitions
C and C ′ such that C � C ′ and C �C ′.

To prove the uniqueness claim, first consider the case A /∈ C . Let C1�C2� � � � �
Ck be maximal coalitions in ordering �. By lack of 2-cycles and preference
strictness, the coalitions C1� � � � �Ck are disjoint. By (3) and strictness of prefer-
ences, the maximal coalitions must be a part of every stable coalition structure,
and by induction, there is a unique stable coalition structure. Lemma 1 com-
pletes the argument for the case A ∈ C . Q.E.D.

PROOF OF THEOREM 1: With regard to the proof of Theorem 1, the exis-
tence claim follows from Lemmas 3, 4, and 2. The uniqueness claim follows
from Lemma 5. Q.E.D.

LEMMA 6: Let R satisfy R2. If all profiles �A∈ R admit a stable coalition struc-
ture, then there is no �A∈ R and 3-cycle C3�1 ≺a1 C1�2 �a2 C2�3 �a3 C3�1 such that
Ci−1�i ∩Ci�i+1 = {ai} for i= 1�2�3.

PROOF: By way of contradiction, assume that there exist �A∈ R and 3-cycle
of coalitions C1�2�C2�3�C3�1 prohibited by the lemma. Notice that coalitions
Ci�i+1 are all different because if Ci−1�i = Ci�i+1, then Ci−1�i = Ci�i+1 = {ai}, and
hence a1 = a2 = a3, and this agent’s preferences would be cyclic. We modify
the preference profile and construct a profile in R that does not admit a stable
coalition structure. At each step of the procedure let us continue to denote the
current profile by �A.

First, use R2(ii) with C = C1�2 to find a preference profile �A∈ R such that
C3�1 ≺a1 C1�2, C1�2 ≺a2 C2�3� and C2�3 �a3 C3�1. Then use R2(ii) with C = C2�3 to
find �A such that C3�1 ≺a1 C1�2, C1�2 ≺a2 C2�3� and C2�3 ≺a3 C3�1.

Last, one by one, for all coalitions C that (i) contain an agent from C1�2 ∪
C2�3 ∪ C3�1 and (ii) are different than C1�2�C2�3�C3�1, use R2(i) to find �A∈ R
such that C ≺a Ck�k+1 for a ∈ C ∩Ck�k+1, k= 1� � � � �3.



352 MAREK PYCIA

The resulting profile of preferences belongs to R and does not admit a stable
coalition structure. This completes the proof. Q.E.D.

LEMMA 7: Assume that R satisfies R1 and no profile in R admits a 3-cycle
prohibited by Lemma 6. If agents a�b� c and coalitions C�C ′�Ca�Cb are such
that

Ca ∩C = Ca ∩C ′ = {a}�
Cb ∩C = Cb ∩C ′ = {b}�
Ca ∩Cb = {c}�

then C �a C
′ �⇒ C �b C

′ for all �A∈ R.

PROOF: By way of contradiction, assume that

C �a C
′ and C ′ ≺b C�

Because Ca �= Cb� the condition R1 implies that there is �A∈ R (we continue
using the symbol �A for the new profile) such that

C �a Ca �a C
′ and C ′ �b Cb �b C�

and preferences between coalitions other than Ca, Cb are unchanged. Notice
that at least one above preference of b is strict. Assume that

C ′ ≺b Cb;
the argument in the other case is symmetric. Since C�Cb�Ca cannot form a
prohibited 3-cycle, we have

Cb �c Ca�

Then, however, the coalitions C ′�Cb�Ca form a prohibited 3-cycle—a contra-
diction that proves the claim. Q.E.D.

LEMMA 8: Let C satisfy C1 and C3, and let R satisfy R1. If no profile in R
admits a 3-cycle prohibited by Lemma 6, then all profiles in R are pairwise aligned.

PROOF: Take any proper coalitions C�C ′ such that C �a C
′. We are to show

the following claim: C �b C
′ for any b ∈ C ∩ C ′. In particular, we may assume

that b �= a and C ′ �b C.
Step 1. We prove the claim assuming that a�b ∈W and |F | ≤ 1. Consider two

cases:
(i) Case W � C ∪ C ′: Take c ∈W − (C ∪ C ′). By C1 and C3(i), Ca = {a� c}

and Cb = {b� c} are coalitions. The assumptions of Lemma 7 are satisfied and
our claim follows.
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(ii) Case W ⊆ C ∪C ′: By C1 and C3(i), {a�b} is a coalition. Because of R1,
we can assume that

C �a {a�b} �a C
′�

By C3(ii),W � C∪{a�b}, and thus the first preference above and case (i) imply
that C �b {a�b}. Similarly, {a�b} �b C

′� By transitivity, C �b C
′.

Step 2. We prove the claim assuming that a or b is in F . The argument re-
sembles Step 1.

(i) Case W � C ∪ C ′: Assumption C1 implies that one of the agents a�b is
a worker. Assume that a ∈ F�b ∈W ; the argument in the other case is similar.
Take c ∈W − (C ∪ C ′). By C1 and C3(i), Ca = {a� c} is a coalition and either
Cb = {b� c} is a coalition or there is f ∈ F − {a} such that Cb = {b� c� f } is a
coalition. In both cases, the assumptions of Lemma 7 are satisfied and our
claim follows.

(ii) CaseW ⊆ C∪C ′: The argument follows the argument of Step 1(ii) word
by word.

Step 3. We prove the claim assuming that a�b ∈W and |F | ≥ 2. Consider two
cases.

(i) Case F � C ∪ C ′: Take c ∈ F − (C ∪ C ′). By C1 and C3(i), Ca = {a� c}
and Cb = {b� c} are coalitions, and our claim follows from Lemma 7.

(ii) Case F ⊆ C ∪ C ′: By C1, there is c ∈ F − C ′, and then C1 and C3(i)
imply that {a� c} and {b� c} are coalitions. If c /∈ C, then Lemma 7 concludes
the argument. Consider c ∈ C. By R1, we can assume that

C �a {a� c} �a C
′ and C ′ �b {b� c} �b C�

Step 2 applied to {b� c} �b C gives {b� c} �c C and we derive C �c {a� c} simi-
larly. By transitivity,

{b� c} �c {a� c}�
Since we also know that {a� c} �a C

′ �b {b� c}, the lack of prohibited 3-cycles
gives

C ′ ∼a {a� c} ∼c {b� c} ∼b C
′�

Putting together what we have shown above about the preferences of c, we see
that C �c {a� c} ∼c {b� c} �c C and, thus, {b� c} ∼c C. Step 2 then implies that
{b� c} ∼b C. This indifference and the above-displayed indifference of b imply
that C ∼b C

′. This ends the proof of the lemma because Steps 1–3 cover all
possible situations. Q.E.D.

PROOF OF THEOREM 2: The proof of Theorem 2 follows from Lemmas 6
and 8. Q.E.D.



354 MAREK PYCIA

PROOF OF PROPOSITION 1: The assumptions on Ua guarantee that the max-
imization problem max(sa)a∈C log(

∏
a∈C Ua(sa)) is concave and has an interior

solution. The resulting sharing rule is pairwise aligned and efficient. The re-
maining implication is the nontrivial part of the proposition. Let us thus as-
sume that a sharing rule D is pairwise aligned and efficient, and construct the
Nash-like representation. We may also assume that there is at least one worker,
because otherwise C1 would imply that only singleton sets are coalitions and
the efficiency of D would imply that any profile of Ua represents D, and thus
the proposition would hold true.

For each proper coalition C and agents a�b ∈ C, let us define the function
tb�a :R+ →R+ by

tb�a(Da�C(y))=Db�C(y)� y ≥ 0�

The function maps the share agent a obtains when C produces y into the share
agent b obtains at the same output level. The function is well defined because
Da�C is onto R+ and the strict monotonicity of Da�C guarantees that Da�C(y)=
Da�C(y

′) implies y = y ′ and, hence, Db�C(y)=Db�C(y
′). Moreover, function tb�a

is strictly increasing and continuous (by monotonicity and continuity of Da�C

and Db�C). Finally, function tb�a does not depend on C because the pairwise
alignment of D implies that for C�C ′  a�b, the equality Da�C(y)=Da�C′(y ′) is
equivalent to Db�C(y)=Db�C′(y ′).

To construct functionsUa, a ∈A, fix an arbitrary reference workerw∗. By C1,
functions tw∗�b are defined for all agents b. Furthermore, each function tw∗�b is
invertible, the function f : (0�∞)→ (0�∞) given by

f (t)= min
b∈A

[(tw∗�b)
−1(t)]−1/2� t > 0�

is continuous and strictly decreasing (because tw∗�b are continuous and strictly
increasing), and f (s) → +∞ as s → 0+ (because the inverse function
t−1
w∗�b(s)→ 0 as s→ 0). Thus, the auxiliary functions ψa : (0�∞)→ (0�∞) given

by

ψa = f ◦ tw∗�a

are positive, continuous, and strictly decreasing, and ψa(s)→ +∞ as s→ 0+.
Functions ψa are integrable at 0 because they are positive and bounded above
by (0�∞)  s→ s−1/2. Define

Wa(s)=
∫ s

0
ψa(τ)dτ

and observe that Wa are strictly increasing, strictly concave, and differentiable,
and W ′

a(0) = lims→0ψa(s) = +∞. Define Ua = exp◦Wa and notice that these
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functions are strictly increasing, strictly log-concave, and differentiable, and
Ua
U ′
a
(0)= 1

W ′
a
(0)= 0.

It remains to take an arbitrary coalition C and show that (Da�C(y))a∈C is
equal to the solution of the maximization problem

arg max∑
a∈C sa≤y

∑
a∈C
Wa(sa)�

The maximization problem is concave and hence has a solution. Furthermore,
W ′
a(0)= +∞ guarantees that the solution is internal and satisfies the first order

Lagrange condition ψa(s̃a)= λ for some constant λ. The first order condition
can be rewritten as tw∗�a(s̃a)= f−1(λ) or

s̃a = ta�w∗(f−1(λ))�

Since ta�w∗ is strictly monotonic, s̃a is uniquely determined by this equation and
the tight feasibility constraint

∑
a∈C
s̃a = y

(the constraint is tight because Wa are strictly increasing).
If C does not contain any workers, then C1 implies that C is a singleton coali-

tion, and the Pareto efficiency of D is enough to yield the claim. Otherwise, fix
a worker w ∈ C and notice that for agents a ∈ C, we have Da�C = ta�w ◦Dw�C .
Since C1, C2, and R1 are satisfied, Lemma 3 implies that ta�w∗ ◦ tw∗�w = ta�w and,
hence,

Da�C(y)= ta�w∗(tw∗�w ◦Dw�C(y))= ta�w∗(x)

for x = tw∗�w ◦Dw�C(y). Notice that x does not depend on a and can be writ-
ten as f−1(λ) for some λ; thus, the system of equations for Da�C(y) is identical
to the analogous equations for s̃a above. Also note that the Pareto efficiency
of Da�C(y)|a∈C is identical to the tight feasibility constraint on s̃a. The unique-
ness of solutions to these equations means that s̃a =Da�C(y), which was to be
proved. Q.E.D.

PROOF OF PROPOSITION 3: The representation of Corollary 2 is applicable
because C satisfies C1–C3. Hence all regular, efficient, and stability-inducing
sharing rules can be represented by a profile of agents’ bargaining functions,
Ua. Let da be the inverse function of U ′

a

Ua
. Let us refer to functions da as demand

functions because da(p) can be interpreted as the demand of an agent with
utility logUa who faces price p per unit of output. Notice that agent a’s share
sa of output y in coalition C  a satisfies sa = da(p), where p is determined by
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the market-clearing condition
∑

a∈C da(p) = y . Agents prefer coalitions with
lower market-clearing price p, and the sharing rule is fully characterized by
the profile of demands (da)a∈A. For instance, if Ua(s) = sλa , then da(p) = λa

p

and the market clearing price in coalition of such agents is p= 1
y

∑
a∈C λa.

Notice that every demand function da :R+ → R+ is a decreasing bijection,
and any decreasing bijection da corresponds to a bargaining function Ua(s)=
exp◦ ∫ s

1 d
−1
a (t)dt that is strictly increasing, differentiable, log-concave, and

such that Ua
U ′
a
(0) = 0. Consequently, two demand profiles (da)a∈A and (d̃a)a∈A

represent the same sharing rule if and only if there is an increasing bijection
T :R+ →R+ such that d̃a = da ◦ T for every a ∈A. We can thus normalize the
demand function by assuming that

∑
a∈A da(p) = 1

p
. In this way, we obtain a

one-to-one correspondence between sharing rules and normal-form demand
profiles. Let us partition the sharing rules into subclasses such that normal-
form demands db, b ∈ F ∪ (W − L), and the sum

∑
a∈L da are the same for

each rule in the subclass. It remains to prove that among rules in an element
of the partition, the unique rule in which dw = dw′ for workers w�w′ ∈L maxi-
mizes the probability that L belongs to a stable coalition structure.

We can restrict attention to output profiles that result in strict preferences of
agents among subcoalitions of A−L, as this event happens with probability 1.
Furthermore, we can prove the claim conditional on a fixed profile of outputs
for L and coalitions of agents in A−L. Because of strict preferences and the
regularity of the sharing rule, Theorem 1 implies that there is a unique stable
coalition structure onA−L. Let {C1� � � � �Ck} be this stable coalition structure.
Hence, whenever L belongs to a stable coalition structure, the stable structure
is {L�C1� � � � �Ck}. We refer to this event as L being stable.

Let us take any sharing rule and let (da)a∈A be its normal-form represen-
tation. Select a pair of workers w�w′ ∈ L ∩W and adjust the sharing rule so
that both workers w and w′ are endowed with demand functions dw+dw′

2 . The
resulting demand-function representation is in normal form and the resultant
sharing rule belongs to the same element of the partition as (da)a∈A. Let us
check that the probability of L being stable is larger for the adjusted sharing
rule (and strictly larger if the distributions are strictly log-concave). The inde-
pendence of output distributions implies that the probability that L is stable
equals the product of probabilities that L is not blocked by coalitions C �= L
such that C ∩L �= ∅. The adjustment does not change the probability that L is
blocked by C if C contains both or neither of workers w and w′ because the
market-clearing prices of L, coalitions disjoint with L, and C stay the same
in every profile of outputs. We show that the adjustment increases the joint
probability that L is not blocked by coalitions Cw or Cw′ such that w ∈ Cw and
w′ /∈ Cw, and Cw′ = Cw ∪ {w′} − {w}; by symmetry, either both sets Cw and Cw′
are coalitions or none is. Let us denote the set Cw −{w} = Cw′ − {w′} by S (this
set is not necessarily a coalition), and let p∗ be the minimum among market-
clearing prices in coalition L and those among coalitions Ci, i= 1� � � � �k, that
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have a nonempty intersection with set S. Coalitions Ca and Cb do not block
{L�C1� � � � �Ck} precisely when their market clearing prices are above p∗. De-
note by Fm the c.d.f. of the probability distribution from which outputs of a
coalition of size m are drawn. The probability that L is not blocked by Cw and
Cw′ before adjustment equals

F|Cw |

(
y ≤ dw(p∗)+

∑
a∈S
da(p

∗)
)
F|Cw′ |

(
y ≤ dw′(p∗)+

∑
a∈S
da(p

∗)
)
�

and by concavity of log◦F|Cw | = log◦F|Cw′ |, the probability after adjustment

F|Cw |

(
y ≤ dw + dw′

2
(p∗)+

∑
a∈S
da(p

∗)
)

× F|Cw′ |

(
y ≤ dw + dw′

2
(p∗)+

∑
a∈S
da(p

∗)
)

is higher.
As we repeat the above procedure in such a way that every possible pair

of workers a�b is selected infinitely many times, the demand function of each
worker from L converges pointwise to 1

|L∩W |
∑

w∈L∩W dw (the demand functions
of other agents do not change). The probability that L is stable is higher for
the sharing rule that is the pointwise limit of the procedure than for the orig-
inal sharing rule (da)a∈A. This is so because the distributions of outputs are
absolutely continuous, demands are decreasing, and, hence, the probability of
L being stable is continuous in the point-wise metric on the demand profiles
(da)a∈A. Q.E.D.

PROOF OF PROPOSITION 4: First consider the case L = A. There are two
places in the sketch of the proof in the main text that require a supporting
argument. First consider coalitionC that contains a but not b. We need to show
that the probability that A is not blocked by one (or both) of the coalitions
Ca = C and Cb = C ∪ {b} − {a} is decreasing when we replace λa with λa + ε
and λb with λb − ε so that

λa < λa + ε≤ λb − ε < λb�
We refer to such changes of bargaining powers as a (λa�λb�ε) adjustment. We
show that (λa�λb� ε) adjustment increases the probability thatA is not blocked
conditional on the output ofA being equal to an arbitrary y ≥ 0. The argument
follows the same logic as an analogous argument in Proposition 3. Denote by
Fk the c.d.f. of the probability distribution from which outputs of a coalition of
size k are drawn. Conditional on the output ofA being equal to y and keeping
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the original bargaining powers, the grand coalition is not blocked by either Ca
and Cb if

y∑
i∈A
λi

≥ y(Ca)∑
i∈Ca

λi
and

y∑
i∈A
λi

≥ y(Cb)∑
i∈Cb

λi
�

By independence, the conditional probability of these two inequalities is equal
to the product

F|Ca|

⎛
⎜⎜⎝

∑
i∈Ca

λi

∑
i∈A
λi
y

⎞
⎟⎟⎠F|Cb|

⎛
⎜⎜⎜⎝

∑
i∈Cb

λi

∑
i∈A
λi
y

⎞
⎟⎟⎟⎠ �

Similarly, the conditional probability that A is not blocked after we adjust λa
and λb equals

F|Ca|

⎛
⎜⎜⎝
ε+

∑
i∈Ca

λi

∑
i∈A
λi

v

⎞
⎟⎟⎠F|Cb|

⎛
⎜⎜⎜⎝

−ε+
∑
i∈Cb

λi

∑
i∈A
λi

v

⎞
⎟⎟⎟⎠ �

and is higher than the probability before adjustment because of the assump-
tion that log◦F|Ca| = log◦F|Cb| is concave. The probability increase is strictly
positive if log◦F|Ca| = log◦F|Cb| is strictly concave.

The remaining supporting argument is given by the following claim.

CLAIM: If
∑

a∈A λa = ∑
a∈A λ

′
a and (λa)a∈A > (λ′

a)a∈A, then there exists a finite
sequence of (λa�λb�ε) adjustments that transforms (λ′

a)a∈A into (λa)a∈A (that is,
there are bargaining power profiles λk ∈ RA+ , k= 1� � � � � n ≥ 2, such that λ1 = λ′,
λn = λ, and there are two coordinates a�b ∈ C such that λk+1

−a�b = λk−a�b, and λka <
λk+1
a ≤ λk+1

b < λkb , and λk+1
a − λka = λkb − λk+1

b ).

PROOF: We may assume that λ′
1 < · · ·< λ′

n because the ordering between λ′

and λ is independent of permutation (or renaming) of agents in A. Then also
λ1 < · · · < λn because λ > λ′. Notice that λ1 > λ

′
1, as otherwise λi ≤ λ′

i for all
i= 1� � � � � n with some inequalities strict, contrary to λ and λ′ having the same
sum of coordinates. Similarly, λn < λ′

n.
Let λ1 = λ′ and define a to be the maximal subscript such that λ1

a = λ1
1,

and define b to be the minimal subscript such that λ1
b = λ1

n. Let ε= min(λ1
b −

λ1
b−1�λ

1
b − λ1�λ

1
a+1 − λ1

a�λ1 − λ1
a). Let λ2 be given by the (λ1

a�λ
1
b� ε) adjustment

of λ1 (in words, the adjustment is raising the a-coordinate and lowering the b-
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coordinate as long as λ2
a is weakly lower than λ1

a+1 and λn, and λ2
b weakly higher

than λ1
a+1and λ1). Notice that

λ1 < λ2 ≤ λ
and ∑

i=1�����n

|λi − λ1
i |>

∑
i=1�����n

|λi − λ2
i |�

If λ2 �= λ, then we construct λ3 via the same procedure with λ2 substituted for
λ1� The analogs of the above-displayed relations continue to hold. Since all λka
and λkb come from a finite grid, the iterations terminate with some λk = λ. This
ends the proof of the claim. Q.E.D.

Finally, consider the case L �= A. Again, we may assume that
∑

a∈L λa =∑
a∈L λ

′
a. The argument that ε adjustments increase the probability of L being

stable follows the same lines as an analogous argument in the proof of Propo-
sition 3. The analog of the above claim on sequences of ε adjustments remains
true, and concludes the proof.28 Q.E.D.

PROOF OF PROPOSITION 5: Fix agents’ preference profiles and a stable
coalition structure {C1� � � � �Ck}. To show that the coalition structure is imple-
mentable as a strong Nash equilibrium, consider first the case C1 =A. By as-
sumptions of the proposition, there is a profile of strategies of agents σ such
that A ∈ μ(σ); this profile must be a strong Nash equilibrium. If C1 �= A,
then all coalitions Ci are proper. By Lemmas 3 and 4, there are no n-cycles
for n = 2�3� � � � � Notice that this implies that at least one of the coalitions
C1� � � � �Ck is weakly preferred by its members to all other proper coalitions.
Indeed, if not, then let C ′

1 be a proper coalition that is strictly preferred to
C1 by an agent a1 from C1 ∩ C ′

1. Since {C1� � � � �Ck} is stable, there must be a
coalition Ci and agent a′

1 that weakly prefers Ci to C ′
1. We could repeat the

procedure and define C ′
2 to be a proper coalition that is strictly preferred to Ci

by at least one agent a2 ∈ Ci ∩C ′
2. Since there are a finite number of coalitions,

in this way we would eventually construct an n-cycle. The contradiction proves
that there is a coalition Ci1 that is weakly preferred by all its members to any

28We can define a similar partial ordering on all regular, efficient, and stability-inducing sharing
rules. Take, for instance, L=A and represent the sharing rule in the demand form of the proof of

Proposition 3. The ordering is then such that (da)a∈A dominates (d′
a)a∈A if d(i)(p)

d(i+1)(p)
≥ d′

(i)(p)

d′
(i+1)(p)

� i=
1� � � � � |A|, where the order statistics d(i) and d′

(i) are taken pointwise (independently for every
price p). The comparison of probabilities of A being stable under the two sharing rules follows
the construction from Proposition 4 with the proviso that (da�db�ε) adjustments be defined for
functions ε :R+ →R+ that preserve monotonicity of da + ε and db − ε.
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other proper coalition. We can recursively re-index coalitions Ci1�Ci2� � � � �Cik
so that Cij is weakly preferred by all its members to any proper coalition of
agents in A − (Ci1 ∪ · · · ∪ Cij−1). By assumptions of the proposition, there is
a profile σCi of strategies of agents from Ci that leads to the formation of Ci.
Profiles σCi put together form a strong Nash equilibrium. Q.E.D.
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