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Abstract
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⇤Department of Economics, UCLA, 8283 Bunche, Los Angeles, CA 90095; pycia (at) ucla.edu;
http://pycia.bol.ucla.edu. I would like to thank Andrew Atkeson, Qingmin Liu, and William Zame.
Keywords: multi-unit demands, responsive preferences, envy-freeness, ordinal efficiency, Random
Priority, Probabilistic Serial.

1



1 Introduction

The present note introduces a general framework of assignment with multiple-unit de-

mands and (first-order-stochastic-dominance-) responsive preferences, and offers some

preliminary results on Bogomolnaia and Moulin (2001) Probabilistic Serial mecha-

nism, and on envy-freeness. The results illustrate the usefulness of the proposed

framework. We study assignment of both divisible and indivisible goods.

A related concept of responsive preferences has been well-studied in matching,

beginning with Roth (1985), but has not been explored in studies of object allocation,

except for the special case of responsiveness in which agents preferences are additively

separable. Additively separable preferences have been studied by Hatfield (2009),

Kojima, 2009, Kasajima (2009), and Heo (2011). In general the literature on multi-

unit demands is rich, and the literature review is very preliminary in the current draft

of the paper.

2 Model

A finite economy consists of a finite set of agents N , a finite set of object types ⇥ (or

simply objects), and a finite set of object copies O.1 Each copy o 2 O has a uniquely

determined type ✓ (o) 2 ⇥.

Agents have multiple-unit demands. For each agent i 2 I let Fi be the set of feasi-

ble consumptions of agent i. We assume that each Fi is compact. We simultaneously

study two variants of multiple-unit assignment:

Divisible goods: fractional consumption is allowed, Fi ⇢ R|⇥|
+ , and we assume that

if a profile (ka)a2⇥ of quantities of goods ✓ 2 ⇥ is feasible then so is any profile (k0
a)a2⇥

such that 0  k0
a  ka, a 2 ⇥.

Indivisible goods: only integer consumption is allowed, Fi ⇢ N|⇥|, and we assume
1We consider both indivisible and divisible goods; in the divisible case we allow fractional copies.

Instead of introducing O, we could equivalently talk about the total quantity of each object in the
economy.
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that if a profile (ka)a2⇥ of quantities of goods ✓ 2 ⇥ is feasible then so is any profile

(k0
a)a2⇥ such that k0

a = 0, 1, ..., ka, a 2 ⇥.

Denote by F = {F i|i 2 N} the class of feasible structures in the economy. In the

indivisible case, we denote by F̃i lotteries over feasible consumptions of agent i; in

the divisible case, denote F̃i = Fi. A (random) allocation µ specifies the expected

quantities µ (i, a) � 0 of good a assigned to agent i. In the divisible case randomiza-

tion may be used, but is not needed; µ might entail randomization in the indivisible

case.2 All allocations studied in this paper are assumed to be feasible in that

X

i2N

µ (i, a) 
��✓�1 (a)

�� for every a 2 ⇥,

µ (i, ·) 2 F̃i for every i 2 N.

The set of these random allocations is denoted by M.

The setting includes, for instance, course allocation in which an agent can consume

at most one unit of each object, and at most some fixed number of objects (see, among

others, Sönmez and Ünver (2010); Budish and Cantillon (2010); Budish (2010)). An-

other special case of interest obtains when each agent i 2 N is endowed with capacity

Ki > 0 and an allocation µ (i, ·) is feasible if, and only if,
P

a2⇥ µ (i, a)  Ki. In

words, an allocation is feasible if i consumes Ki units, or less; we refer to this latter

condition as agent-specific capacities. Feasibility structures satisfying agent-specific

capacities have been examined in Hatfield (2009), Kojima, 2009, Kasajima (2009),

and Heo (2011).

Each agent i 2 N has preferences �S
i over allocations in F̃i. We assume that the

preferences are responsive – in first order stochastic dominance sense – with respect
2When goods are indivisible an allocation needs to be implemented as a lottery over deterministic

allocations; a deterministic allocation is a one-to-one mapping from agents to copies of objects from
O. Since we cover both assignment of divisible and indivisible goods, we do not take a stance on
whether the possibly random assignment can be decomposed. To assure decomposability one can
additionally impose the decomposability conditions from Budish, Che, Kojima, and Milgrom (2011)
(cf. also Hylland and Zeckhauser (1979) and Bogomolnaia and Moulin (2001)).
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to a strict preference relation �i over objects from ⇥. To define the responsiveness

formally, let us say that µ (i, ·) 2 F̃i dominates µ0 (i, ·) 2 F̃i (in first order stochastic

dominance sense), or µ (i, ·) �FOSD µ0 (i, ·) if

X

a%b

µ (i, a) �
X

a%b

µ0 (i, a) for all b 2 ⇥,

and the dominance is strict (>FOSD) if one of the equalities is strict.

Preferences are responsive if

µ (i, ·) �FOSD µ0 (i, ·) ) µ (i, ·) %S µ0 (i, ·) ,

µ (i, ·) >FOSD µ0 (i, ·) ) µ (i, ·) �S µ0 (i, ·) .

An example of such a responsive preference structure is when agents’ demands are

determined by additively separable von Neumann – Morgenstern utility functions;

such additively separable environments have been studied by Hatfield (2009), Kojima,

2009, Kasajima (2009), and Heo (2011).3

Agents’ preferences over objects define their preferences over copies of objects:

agent i prefers object copy o over object copy o0 iff she prefers ✓ (o) over ✓ (o0), and

the agent is indifferent between two object copies if they are of the same type. We can

thus interchangeably talk about preferences over object types and preferences over

object copies, or simply about preferences over objects. The indifference also implies

that we can interchangeably talk about allocating objects and allocating copies of

objects. We refer to the set of preference rankings as P and to the set of preference

profiles as PN .

We assume that ⇥ contains the null object ↵ (“outside option”), and we assume

that it is not scarce: to simplify exposition let us assume that agents have bounded
3For studies that allow all possible preference profiles over allocations, not only responsive, see,

for instance, Pápai (2001). Responsiveness is a natural structural assumption, and as we illustrate
below, it implies that Bogomolnaia and Moulin (2001) Probabilistic Serial is well-behaved in multi-
unit demand settings.
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demands, and that |✓�1 (↵)| is so large that even if all agents are at capacity, ↵ is

still available. An object is called acceptable if it is preferred to ↵.

Agent’s i feasibility structure Fi and his preference ranking �i over objects are

referred to as the type of the agent.

A mechanism � : PN ! M is a mapping from the set of profiles of preferences

over objects that agents report to the set of allocations.

3 Ordinal Efficiency, Envy-Freeness, and Weak Strategy-

Proofness

In this section we simultaneously characterize the celebrated Probabilistic Serial

mechanism of Bogomolnaia and Moulin (2001), and two natural properties of allo-

cations: ordinal efficiency and envy-freeness. Given preference profile �N , a random

allocation µ ordinally dominates another random allocation µ0 if for every agent i the

distribution µ (i, ·) first order stochastically dominates µ0 (i, ·), that is

X

b%ia

µ (i, b) �
X

b%ia

µ0 (i, b) , 8a 2 ⇥.

A random allocation is ordinally efficient with respect to a preference profile �N if

it is not ordinally dominated by any other feasible allocation. Ordinal efficiency is a

weak and natural efficiency requirement: if an allocation is not ordinarily efficient,

then all agents would ex ante agree there is a better one. Bogomolnaia and Moulin

(2001) discuss this requirement in depth. The conditional form of ordinal efficiency

has been introduced by Budish, Che, Kojima, and Milgrom (2011).

Given preference profile �N , an allocation µ is envy-free if for any two agents

i, j 2 N and any allocation µ̂ (i, ·) 2 F̃i such that 0  µ̂ (i, b)  µ (j, b), for all b 2 ⇥,
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agent i first-order stochastically prefers his allocation µ (i, ·) over µ̂ (i, ·), that is

X

b%ia

µ (i, b) �
X

b%ia

µ̂ (i, b) , 8a 2 ⇥.

When there is only one feasibility structure, F , this concept is equivalent to the

standard concept of first order stochastic dominance envy-freeness. The first order

stochastic dominance comparison is well-funded in our context because agents’ pref-

erences over allocations are responsive. Envy-freeness (referred to also as no envy) is

a strong fairness requirement introduced by Foley (1967).

A mechanism � is weakly strategy-proof if � (�0
i,��i) (i) %S

i � (�) (i) implies that

� (�0
i,��i) (i) = � (�) (i). This concept has been studied by Bogomolnaia and Moulin

(2001).

4 Probabilistic Serial

Probabilistic Serial treats copies of an object type as a pool of probability shares of

the object type. Given preference profile �N , the random allocation produced by

Probabilistic Serial can be determined through an “eating” procedure in which each

agent “eats” probability share of the best acceptable and available object with speed

1 at every time t 2 [0, 1]; an object a is available at time t if its initial endowment

✓�1 (a) is larger than the sum of shares that have been eaten by time t.

Formally, at time t = 0, the total quantity of available shares of object type a 2 ⇥

is Qa (0) = |✓�1 (a)|, and for times t 2 [0,1) we define the set of available objects

A (t) ✓ ⇥ and the available quantity Qa (t) of probability shares of object a 2 ⇥

through the following system of integral equations. To formulate the equations we

say that agent i eats from object a at time t iff a 2 A (t) and 8b 2 A (t) a %i b, and

there exists ✏ > 0 such that ( t (i, b) |b 6=a, 
t (i, a+ ✏)) 2 F̃i. The system of integral
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equations is:

A (t) = {a 2 ⇥|Qa (t) > 0} ,

Qa (t) = Qa (0) �
ˆ t

0

|{i 2 N | i eats from a at time ⌧}| d⌧,

 t (i, a) =

ˆ t

0

� (i eats from a at time ⌧) d⌧,

where the Boolean function � (statement) takes value 1 if the statement is true and

0 otherwise. If stopped at time t, the eating procedure allocates object a 2 ⇥ to

agent i 2 N with probability  t (i, a). The allocation  (i, a) of Probabilistic Serial is

given by the eating procedure stopped at the time no agent eats from any object any

longer, alternatively  =  |O|.

The continuity of the functions Qa implies that for any time T 2 [0, 1) and any

⌘ > 0 sufficiently small, any agent i eats the same object for all t 2 [T, T + ⌘).

In the eating procedure there are some critical times when one or more objects get

exhausted. At this time some of the available quantity functions Qa have kinks; at

other times their slope is constant.4

5 Some Observations on Probabilistic Serial

To illustrate the usefulness of our setting, this section extends some of the key insights

from Bogomolnaia and Moulin (2001) to the present multi-unit demand setting.5

Proposition 1. The allocations of Probabilistic Serial are envy-free and ordinally

efficient. If the feasibility structure satisfies agent-specific capacities then Probabilistic

Serial is weakly strategy-proof.

4This structure of quantity functions Qa implies that we can define the allocation of Probabilistic
Serial through a system of difference equations; such definitions are given in Bogomolnaia and Moulin
(2001), and, for the environment with copies, in Kojima and Manea (2010). Heo (2011) extends the
definition of probabilistic serial to multiple-demand environments in which demands are determined
by additive utility function.

5Cf. also Heo, 2011 who extended the above result to multi-unit demand setting with additively
separable preferences.
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Ordinal-efficiency and envy-freeness of Probabilistic Serial were proved by Bogo-

molnaia and Moulin (2001) for single-unit demands, and their proof for envy-freeness

directly extends to our case (notice that envy-freeness is satisfied by each  t).

The proof of ordinal efficiency extends directly if we additionally assume that

the feasibility structure satisfies agent-specific capacities. Without this additional

assumption the proof requires slight modifications. First, notice that after the eating

procedure stops, either the feasibility constraint does not allow agent i to have more

of an object a 2 ⇥, or a is no longer available, or a is unacceptable for i. Given this

it is enough to notice that at each time t, the allocation  t is undominated by any

feasible allocation that uses only copies eaten till time t. The proof of this last claim

relies on the observation that the eating time is naturally divided into intervals such

that during the interval, no agent changes the object eaten (or stops eating). We

may conduct the argument by induction on these intervals. The claim is true in the

first interval, as each agent eats from their most preferred object (among objects the

agent can receive in positive quantity). The responsive structure of preferences now

implies that if the claim is true until n-th interval, then it cannot be violated in the

n-th interval.

Bogomolnaia and Moulin (2001) also proved that Probabilistic Serial is weakly

strategy-proof, and this insight also extends to our setting, with no substantive change

in its proof, provided the feasibility structure satisfies agent-specific capacities.

6 On Envy-Freeness and ✏-Envy-Freeness

This section extends some of insights from Pycia (2011a). Given preference profile �N ,

an allocation µ is envy-free if for any two agents i, j 2 N and any allocation µ̂ (i, ·) 2

F̃i such that 0  µ̂ (i, b)  µ (j, b), for all b 2 ⇥, agent i first-order stochastically
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prefers his allocation µ (i, ·) over µ̂ (i, ·), that is

X

b%ia

µ (i, b) �
X

b%ia

µ̂ (i, b) , 8a 2 ⇥.

When |F| = 1, this general definition reduces to the standard definition: given

preference profile �N , an allocation µ is envy-free if any agent i first-order stochasti-

cally prefers his allocation over the allocation of any other agent j, that is

X

b%ia

µ (i, b) �
X

b%ia

µ (j, b) , 8a 2 ⇥.

The standard form of the condition also obtain if Fi = Fj.6

A preference profile has full support if each agent type is represented in the profile.

The restriction to full-support preference profiles is strong in small markets, however

as the market becomes large the restriction becomes mild.

Proposition 2. If �N has full support and an allocation µ is envy-free and ordinally

efficient then there are constants ta,F > 0, a 2 ⇥, F 2 F , such that µ (i, a) 6= 0 and

Fi = F imply ta,F =
P

b%ia
µ (i, b). If, additionally, the feasibility structure satisfies

agent-specific capacities, then there are constants ta > 0 such that ta,F = min (Ki, ta).

Proof. Let µ (i, a) 6= 0 and µ (j, a) 6= 0, and Fi = Fj. Take agent i0 such that

Fi0 = Fi and who ranks a first and otherwise ranks objects as i does; no envy implies

µ (i0, a) =
P

b%ia
µ (i, b). Similarly, for agent j0 such that Fi0 = Fi and who ranks a

first and otherwise ranks objects as j does; µ (j0, a) =
P

b%ia
µ (j, b). Finally, no envy

further implies that µ (i0, a) = µ (j0, a) because Fi0 = Fi = Fj = Fj0 . If agent specific

capacities are satisfied, then this argument goes through without the assumption

Fi = Fj as long as the capacity constraint is not binding.

Given ✏ > 0 and preference profile �N , an allocation µ is ✏-envy-free if for any
6Envy-freeness (referred to also as no envy) is a strong fairness requirement introduced by Foley

(1967), see Bogomolnaia and Moulin (2001) for the |F| = 1 formulation.
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two agents i, j 2 N and any allocation µ̂ (i, ·) 2 F̃i such that 0  µ̂ (i, b)  µ (j, b),

for all b 2 ⇥,
X

b%ia

µ (i, b) �
X

b%ia

µ̂ (i, b)� ✏, 8a 2 ⇥.

When Fi = Fj this condition simply means that

X

b%ia

µ (i, b) �
X

b%ia

µ (j, b)� ✏, 8a 2 ⇥.

Proposition 3. If �N has full support, ✏ > 0, and an allocation µ is ✏-envy free

and ordinally efficient, then there are constants ta (F ) > 5
2✏, a 2 ⇥, F 2 F , such

that µ (i, a) > ✏ and F = Fi imply
���ta,F �

P
b%ia

µ (i, b)
���  3

2✏. If, additionally, the

feasibility structure satisfies agent-specific capacities, then there are constants ta > 0

such that ta,F = min (Ki, ta).

Proof. As in the proof of Proposition 1, ✏-envy-freeness implies that if µ (i, a) , µ (j, a) >

✏ and Fi = Fj then
���
P

b%ia
µ (i, b)�

P
b%ia

µ (i, b)
���  3✏. Thus there exists ta such that

P
b%ia

µ (i, b) is within 3
2✏ of ta for all agents obtaining a with probability ✏ or higher.

We can assume ta1 >
5
2✏. If agent specific capacities are satisfied, then this argument

goes through without the assumption Fi = Fj as long as the capacity constraint is

not binding.

7 A Comment on Random Priority

To allocate objects, Random Priority first draws an ordering of agents from a uniform

distribution over orderings, and then allocates the first agent her most preferred fea-

sible allocation, then allocates the second agent his most preferred feasible allocation

(drawing on objects that that still has unallocated copies), etc. (see Abdulkadiroğlu

and Sönmez, 1998 for a seminal study of Random Priority). In our setting Random

Priority remains ex post efficient, treats agents with identical feasibility constraints

symmetrically, and is strategy-proof.
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8 Conclusion

The present note introduces the general framework of assignment with multiple-unit

demands and responsive preferences. This framework is used in Pycia (2011b) to

extend the single-unit demand results of Liu and Pycia (2011) to multi-unit demand

environments.
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