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Abstract

This paper studies many-to-one matching problems such as between students and colleges,

and workers and firms in the general case, in which both peer effects and complementarities

are allowed. In a matching, an agent on one side, say a firm, employs a subset of agents from

the other side (workers), thus forming a coalition. The paper interprets an agent’s payoff in a

matching as determined by a division rule applied to the value created by the agent’s coalition.

The main results relate stability to pairwise alignment. A matching is stable if no group of

agents can profitably deviate. Agents’ preferences are pairwise aligned if any two agents in the

intersection of any two coalitions prefer the same one of the two coalitions. The results say that

under mild regularity conditions (i) if the division rule generates pairwise-aligned preferences

then there exists a stable matching, and (ii) if there exists a stable matching for all profiles

of coalitional values then the division rule generates pairwise-aligned preferences. The Nash

bargaining and Tullock rent-seeking are examples of division rules that satisfy the proposed

pairwise-alignment condition and were not previously linked to stability.
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1. Introduction

This paper studies many-to-one matching problems such as between students and

colleges, interns and hospitals, and workers and firms.1 An agent on one side, say a firm,

can hire as many workers as it needs, and an agent on the other side, a worker, can be

employed by a firm or remain unemployed. In this way, the agents form coalitions: (i)

an unemployed worker is considered a coalition, and (ii) all other coalitions consist of a

firm and its workforce. Each agent has preferences over the coalitions that contain this

agent. A matching is stable if (i) no matched worker prefers unemployment to working

for the matched firm, and (ii) no firm can hire a subset of workers to whom that firm is

matched and a group (possibly empty) of additional workers so that the firm and all the

additional workers strictly increase their payoffs. Starting with the work of Roth (1984)

on US matching between interns and hospitals, substantial empirical evidence links the

lack of stability with market failures.2

The most general known sufficient conditions for stability are derived from the Kelso

and Crawford (1982) gross-substitutes condition.3 In a formulation of Roth and So-

tomayor (1990), the substitutability condition is as follows: if a firm wants to employ a

worker w from a large pool of workers, then the firm wants to employ w from any smaller

pool containing w. Kelso and Crawford (1982) show that if firms’ preferences satisfy the

substitutability condition and there are no peer effects — that is, workers’ preferences

depend only on the firm they apply to and not on who their peers will be — then there

exists a stable many-to-one matching.

There are matching settings that do not satisfy the standard assumptions of sub-

stitutability and lack of peer effects. The substitutability condition fails if there are

1The college admission problem was introduced by Gale and Shapley (1962). A recent example from

the realm of education is the design of a new high school admissions system in New York City, which

allows both schools and students to influence the matching (Abdulkadiroğlu, Pathak, and Roth 2005).

Medical labor markets are studied for example in Roth (1984), Roth (1991), Roth and Peranson (1999),

Niederle and Roth (2004), and McKinney, Niederle, and Roth (forthcoming). Roth (2002) provides

a survey. Roth and Sotomayor (1990) is a classic survey of theory, empirical evidence, and design

applications of the many-to-one matching models.
2Gale and Shapley (1962) raised the question of stability of matchings. The evidence linking lack of

stability to market failures is surveyed in Roth and Sotomayor (1990) and Roth (2002).
3Cf. Roth and Sotomayor (1990), Echenique and Oviedo (2006), Hatfield and Milgrom (2005), and

Ostrovsky (2005). Roth (1985)’s responsiveness condition is also a variant of substitutability.
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non-trivial complementarities between workers. It also fails when there are fixed costs.

The complementarities are non-trivial if, for example, a firm’s production process is

profitable only when adequately staffed. For instance, a biotech firm may not open a

new R&D lab if it is unable to hire experts in all complementary areas required for the

lab’s work. Substitutability fails for firms with fixed costs if their operations must be of

some minimal size to ensure profitability. Peer effects are present if workers care about

interactions in the workplace or if the identity of other workers non-trivially influences

workloads or day-to-day bargaining between workers.

This paper provides a novel sufficient and, in a sense explained below, necessary

condition for stability that may be used to analyze settings with complementarities and

peer effects such as those mentioned above. The paper also shows that the condition is

satisfied by several standard models of economic interactions that have not previously

been recognized as admitting stable matchings.

The main component of the proposed condition is the pairwise alignment of pref-

erences. Agents’ preferences are pairwise aligned if the restrictions of any two agents’

preference relations to the set of coalitions to which they both belong coincide. For

instance, a firm and a worker either both prefer to form a firm-and-one-employee coali-

tion or both prefer a larger coalition that includes the firm, the worker, and some other

workers.

The sufficient and necessary condition is developed in three stages, from specific to

more general environments.

Section 2 presents an example of matching with payoffs to members of any possible

coalition being determined by equal division of the revenue (or, more abstractly, of the

transferable-utility value) that the coalition generates. Section 4 generalizes this example

by replacing the equal division rule with a broad class of division rules. The results

are particularly relevant for matching situations in which agents are unable to negotiate

binding agreements. Section 5 addresses the problem in a nontransferrable-utility setting

with agents’ preferences as primitives.

In the example of Section 2, there are two dates. On date 1, firms and workers match

— that is, form coalitions. On this date, firms and workers cannot negotiate binding

employment contracts. In effect, on date 1, the agents’ preferences over coalitions result

from the agents’ expectations of the payoffs that will be negotiated on date 2. On date 2,

each coalition creates a value and its members divide the value equally among themselves.
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Each resultant preference profile is pairwise aligned and, thus, the pairwise alignment

condition is embedded in this setting.

Section 2 shows that there is a stable matching in the equal division example. It also

proves a stronger property of this matching setting, namely the existence of a metarank-

ing. A metaranking is a transitive relation on all coalitions; its defining property is that,

restricted to coalitions containing an agent, the transitive relation agrees with preferences

of this agent.4

Section 4 discusses matching when payoffs are determined by division rules that satisfy

mild regularity properties. A division rule may represent a continuation game or a

bargaining protocol. As in the example of Section 2, each coalition has a value. The

division rule takes the values of coalitions, that is the value function, and generates agents’

payoffs and resultant preferences over coalitions. A division rule is called pairwise aligned

if agents’ preferences over coalitions are pairwise aligned for any value function.

Section 4 establishes a sufficient and necessary condition for stability. If agents’

payoffs are determined by a pairwise-aligned division rule then there exists a stable

matching. Furthermore, if a division rule generates payoffs such that there exists a

stable matching for any value function, then the division rule is pairwise aligned.

Section 5 reformulates the problem with agents’ ordinal preferences over coalitions as

primitives. The sufficient condition imposes pairwise alignment on agents’ preferences

from a rich domain of preference profiles as it is not sufficient for stability to impose

pairwise alignment on a single preference profile (an example of a matching situation

with pairwise-aligned preferences and no stable matching is included in Section 4). In the

preference framework of Section 5, the pairwise alignment remains a necessary condition

for the existence of stable matchings for all preference profiles from large domains of

profiles.

Section 5 also relaxes the metaranking property in such a way that (i) it is satisfied

in the Gale and Shapley (1962) marriage model, (ii) it is satisfied whenever payoffs are

generated by a pairwise-aligned division rule, and (iii) it is equivalent to the existence of

a rich domain of pairwise-aligned preference profiles. Section 5 then shows that if agents’

preferences satisfy the relaxed metaranking property then there exists a stable matching.

The sufficiency and necessity results proved in this paper allow one to determine which

4This example mimics Farrell and Scotchmer’s (1988) study of partnerships that share the surplus

equally among their members. They showed that the core is non-empty in a coalition formation game

followed by an equal division of value. They also introduced the concept of a metaranking.
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sharing rules and games induce the existence of stable matchings. Section 4 shows that

the Nash bargaining solution always induces stability while the Kalai and Smorodinsky

bargaining solution does not. Section 6 determines the class of linear sharing rules and the

class of welfare-maximization mechanisms that induce the existence of stable matchings.

Section 6 also shows that there is always a stable matching if agents’ preferences are

induced by Tullock’s (1980) rent-seeking game.

The two main ideas of the present paper — the framework of division rules for the

analysis of stability and the pairwise-alignment condition for stability — are both new. As

discussed above, the many-to-one matching literature — e.g., Gale and Shapley (1962),

Kelso and Crawford (1982), Roth (1985), Roth and Sotomayor (1990), Hatfield and

Milgrom (2005) — has used variants of the assumptions of substitutability and of the lack

of peer effects. To the best of my knowledge there are only four papers that move beyond

one or both of these assumptions: Dutta and Massó (1997), Revilla (2004), Echenique

and Oviedo (2006), and Echenique and Yenmez (2007).

Dutta and Massó (1997) maintained the substitutability condition and weakened the

lack of peer effects condition in two ways: (i) allowing exogenously “married” workers to

prefer any coalition that includes their partner to any other coalition, and (ii) allowing

peer effects to influence workers’ preferences between two coalitions if the employer (firm)

is the same but not otherwise. Revilla (2004) generalized their first result by replacing

worker couples with more general groups of workers. He also analyzed a situation in which

agents’ preferences are determined by an exogenous ranking of workers. The present

paper goes beyond these two papers by (i) proposing a new, division-rule based, way to

look at matching problems, (ii) proving a general existence condition that allow both

complementarities and peer effects, (iii) proving the necessity results, and (iv) finding

situations in which the proposed condition is satisfied and that were not previously

recognized as admitting stable matchings.

Echenique and Oviedo (2006) and Echenique and Yenmez (2007) construct algorithms

that find stable matchings in general settings. In contrast, the goal of this paper is to

develop our understanding when stable matching exist.

In addition to the above-mentioned many-to-one matching papers, there are two

papers on the existence of core coalition structure in (one-sided) coalitional games that

are related to the present results. Farrell and Scotchmer (1988) study the formation

of partnerships. They show that the core is non-empty in a coalition formation game
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followed by an equal division of value. An illustrative example presented in Section

2 is based on their insight. Farrell and Scotchmer (1988) introduce also the concept

of metaranking that is being used in Sections 2 and 4.5 Banerjee, Konishi, and Sönmez

(2001) show that the equal division may be replaced by some other linear sharing rules in

Farrell and Scotchmer’s analysis.6 Neither of these papers studies the stability properties

of general division rules nor recognizes the connection between stability and the pairwise

alignment.

All examples discussed in the present paper exhibit a two-date structure: on the

first date agents match but are unable to negotiate binding contracts, on the second

day, after the coalitions are locked in, the division of value is negotiated. This two-date

structure has been used in an empirical paper by Sørensen (2005) who studies many-

to-one matching between start-ups and (lead) venture capital firms, and quantifies the

synergies between a start-up and the venture capital firm that is matched with it. He

argues that due to severe contractual incompleteness start-ups and venture capital are

unable to structure their future relationships in a binding way when they match. Hence,

the profits are divided only as they are realized, after the matching is concluded. In

contrast to the present paper, Sørensen assumes that there are no synergies between

start-ups in a venture capital firm’s portfolio. In particular, in Sørensen (2005) there

are no complementarities (that is synergies between start-ups reflected in the venture-

capital payoff) and there are no peer effects (that is synergies between start-ups reflected

in start-ups’ payoffs).

2. Example

Let us consider the following many-to-one matching problem. On date 1, firms and

workers match, that is, form coalitions. On this date, firms and workers cannot enter

binding employment contracts. In effect, on date 1, the agents’ preferences over coalitions

5Metarankings are related to pairwise alignment. If a metaranking exists, then preferences are pair-

wise aligned. The converse is true in the special case studied in Section 4 but not in the general setting

of Section 5. The main practical difference between the two concepts is that pairwise alignment may be

directly verified, while to establish the existence of metaranking one needs to construct it.
6Their main result is a relaxation of the Farrell and Scotchmer metaranking property in a direction

unrelated to the present paper. Their “top coalition property” says that each subgroup of agents contains

a coalition that is weakly preferred by all its members to any other coalition of agents in the subgroup.
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reflect the agents’ expectations of the payoffs that will be determined on date 2. On date

2, each resultant coalition, C, creates value v (C) ≥ 0, and its members divide v (C)

equally that is each agent i ∈ C receives v(C)
#C

where #C is the number of agents in

C.7 This example includes situations with complementarities between workers as no

assumption is made about the function v. The peer effects are inherent to the equal

division rule.

In the above matching problem there exists a stable matching. Recall that a matching

is stable if (i) no matched worker prefers unemployment to working for the matched firm,

and (ii) no firm can hire a subset of workers to whom that firm is matched and a group

(possibly empty) of additional workers so that the firm and all the additional workers

strictly increase their payoffs.8

To construct a stable matching, let us first observe that no agents would ever want to

change a coalition that maximizes the index v(C)
#C
. Therefore, the coalition with maximal

v(C)
#C

may be treated as if its members did not participate in the matching between the

remaining agents. In this way, one can recursively construct a stable matching.

This example leads to a question what property of the equal division rule guarantees

the existence of stable matching, and, more generally, what division rules induce stability

in matching problems. This question will be answered in Sections 4 and 5.

3. Basic Concepts

A finite set of agents I is divided into two non-empty disjoint sets, I = F ∪W . We
will refer to agents from F as firms, and to agents fromW as workers. Each worker seeks

a firm, and each firm f ∈ F seeks up to Mf workers, where Mf ≥ 1. A matching is a
function μ from F ∪W into subsets of F ∪W , such that

• μ (w) = {f} if the worker w is employed by the firm f , and μ (w) = {w} if w is

unemployed,

• μ (f) ⊂W and the size #μ (f) ≤Mf for every firm f , and

• μ (w) = {f} iff w ∈ μ (f), for every worker w and firm f .

7As discussed in the introduction, this example mimics Farrell and Scotchmer’s (1988) study of

partnerships that share the surplus equally among their members.
8The formal definition is presented in Section 3.
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Let us use the term coalition to refer to a firm f and all workers matched to f in some

matching, or to refer to an unemployed worker. Thus, a coalition may consist of a firm

f and any subset of workers S ⊆ W of size #S ≤ Mf (including S = ∅) or of an
unemployed worker. Let us denote the set of all coalitions by C. Thus,

C = {{f} ∪ S : f ∈ F, S ⊆W,#S ≤Mf} ∪ {{w} : w ∈W} .

Note that there is a one-to-one correspondence between matchings and partitions of I

into coalitions. In particular, in any matching each agent is associated with exactly one

coalition.

Each agent i ∈ I has a preference relation -i over all coalitions that contain i. The

profile of preferences (-i)i∈I is denoted by -I . This formulation embodies the standard

assumption that each agent’s preferences between two matchings are fully determined by

members of the coalitions containing this agent in the two matchings.

We are interested in the existence of stable matchings in the above environment.

The role of stability — most notably in preventing the unravelling of markets — has been

elucidated in the empirical work started by Roth (1984). In the following definitions of

pairwise stability and group stability, Cμ (i) denotes the coalition containing an agent i

in matching μ. Specifically, the coalition containing a firm f is Cμ (f) = {f} ∪ μ (f) ,

and the coalition containing a worker w is Cμ (w) = μ (w) ∪ μ (μ (w)).

Definition 3.1 (Pairwise Stability).9 A matching μ is blocked by a firm f if there

exists a subset of workers S Ã μ (f) such that {f} ∪ S Âf C
μ (f).

A matching μ is blocked by a worker w if {w} Âw Cμ (w).

A matching μ is blocked by firm f and worker w /∈ μ (f) if there exists S ⊆ μ (f)

such that

• #({w} ∪ S) ≤Mf ,

• {f} ∪ {w} ∪ S Âf C
μ (f) , and

• {f} ∪ {w} ∪ S Âw Cμ (w) .

A matching is pairwise stable if it is not blocked by any individual agent or any

worker-firm pair.

9Cf. Roth and Sotomayor (1990) Definition 5.3.
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Definition 3.2 (Group Stability).10 A matching μ is blocked by a group of workers

and firms if there exists another matching μ0 and a group A consisting of multiple workers

and/or firms, such that for all workers w in A and for all firms f in A,

• μ0 (w) ∈ A (i.e., every worker in A is matched to a firm in A);

• Cμ0 (w) Âw Cμ (w) (i.e., every worker in A prefers the new matching to the old

one);

• ω ∈ μ0 (f) implies ω ∈ A ∪ μ (f) (i.e., every firm in A is matched to new workers

only from A, although it may continue to be matched to some of its “old” workers

from μ (f)); and

• Cμ0 (f) Âf Cμ (f) (i.e., every firm in A prefers its new set of workers to its old

one).

A matching is group stable if it is not blocked by any group of agents.

The stability concepts presuppose that a match is between a worker and a firm. Both

the firm and the worker can unilaterally sever the match, and together they can establish

the match irrespective of other agents’ preferences.11

4. Division Rules and the Stability of Matching

This section answers the question posed by Section 2: what property of the equal

division rule is responsible for the existence of a stable matching. As in the equal division

example, the matching problems studied in this section are parametrized by a value

function v : C → R+ that assigns value v (C) to each coalition C ∈ C. A division rule is
defined to be a function

D : {(i, C, v) : i ∈ C ∈ C, v ∈ R+}→ R+

10Cf. Roth and Sotomayor (1990) Definition 5.4.
11In particular, even though the worker and the firm are members of a coalition composed of the

firm and all its employees, other coalition members — i.e., other workers — have no veto power over the

creation or severance of the firm-worker match.
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that determines the allotmentD (i, C, v) of agent i in coalition C with coalitional value v.

Given a value function v, an agent i prefers a coalition C 3 i to C 0 3 i iffD (i, C,v (C)) ≥
D (i, C 0,v (C 0)).

The equal division sets D (i, C, v) = v
#C

and is an example of a division rule. In gen-

eral, a division rule may represent more complex division games or bargaining protocols

as illustrated in the following two examples.

Example 4.1. (Post-matching pure Nash bargaining). On date 1, firms and workers

form coalitions. On this date, firms and workers cannot enter binding contracts determin-

ing the terms of employment. In effect, on date 1, the agents’ preferences over coalitions

reflect the agents’ expectations of the payoffs that will be determined on date 2. On date

2, each resultant coalition, C, creates value v (C) ≥ 0, and its members divide v = v (C)
into allotments sNB

i . The value of an allotment si to agent i is Ui (si) where an increasing

and concave function Ui is i’s utility or profit function. The allotments si are determined

according to the Nash bargaining solution, that is they are set to maximize

max
si≥0

Y
i∈C
(Ui (si)− Ui (0))

subject to X
i∈C

si ≤ v.

In this example, the division rule is D (i, C, v) = sNB
i .

Example 4.2. (Post-matching Kalai-Smorodinsky bargaining). On date 1, firms and

workers form coalitions. On this date, firms and workers cannot enter binding contracts

determining the terms of employment. In effect, on date 1, the agents’ preferences over

coalitions reflect the agents’ expectations of the payoffs that will be determined on date

2. On date 2, each resultant coalition, C, creates value v (C) ≥ 0, and its members divide
v = v (C) into allotments sKSB

i . The value of an allotment si to agent i is Ui (si) where

an increasing and concave function Ui is i’s utility or profit function. The allotments si

are determined according to the Kalai-Smorodinsky bargaining solution, that is

sKSB
i =

Ui (v)P
j∈C Uj (v)

v.

The division rule is D (i, C, v) = sKSB
i .
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Both of these examples include situations with complementarities between workers

as no assumption is made about the value function v. The peer effects are inherent to

both Nash and Kalai-Smorodinsky bargaining. Other examples — such as post-matching

Tullock’s (1980) rent-seeking game or linear sharing rules — are discussed in Section 6.

Note the correspondence between agents’ preferences (used to define stability in sec-

tion 3) and the setup with division rule and value function. Every division rule and value

function determine a preference profile and every preference profile may be interpreted

in terms of agents dividing coalitional values via a division rule. The division rule and

value function setup will allow us to focus on the connection between stability and the

institutions generating agents’ payoffs.

We discusses division rules that satisfy the following regularity conditions.

Definition 4.3 (Regularity). A division rule D is regular if for any agent i and

coalition C 3 i

• D has full range: {D (i, C, v) : v ≥ 0} = [0,∞).

• D is monotonic: D (i, C, v) is strictly increasing in v ≥ 0.

• D is continuous: D (i, C, v) is continuous in v ≥ 0.

The equal division rule, Nash bargaining, and Kalai-Smorodinsky bargaining are reg-

ular. The role of these assumptions is discussed at the end of this section.12

The main result is a sufficient and necessary condition for the existence of stable

matchings for all preference profiles induced by a regular division rule. This condition

builds on the notion of pairwise aligned preferences. Recall that preferences are pairwise

aligned if all agents in an intersection of two coalitions prefer the same coalition of the

two.

Definition 4.4 (Pairwise Alignment). Preferences are pairwise aligned if for all

i, j ∈ I and coalitions C,C 0 3 i, j, we have

C -i C
0 ⇐⇒ C -j C

0.

12To make the setting more concrete, one may also assume that
P

i∈C D (i, C, v) ≤ v thus imposing a

feasibility-type constraint on the allotments. Such an additional assumption, however, is not necessary

for the results presented. In fact, the results of this section remain true if the allotments are reinterpreted

as agents’ payoffs.
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A division rule is pairwise aligned if it induces pairwise-aligned preferences for all value

functions.

In particular, then C ∼i C
0 iff C ∼j C

0, and C Âi C
0 iff C Âj C

0. One can readily

verify that the preferences generated by the Nash bargaining solution are pairwise aligned

while preferences generated by the Kalai-Smorodinsky bargaining solution need not be

pairwise aligned.

The sufficient and necessary condition for stability is given by the following.

Theorem 4.5 (Sufficiency and Necessity). Suppose that there are at least two

firms and all firms are able to employ at least two workers (Mf ≥ 2 for f ∈ F ). A

regular division rule is pairwise aligned if, and only if, there is a group stable matching

for each induced preference profile. Moreover, if there is a pairwise stable matching for

each induced preference profile then the rule is pairwise aligned.

As immediate corollaries of this theorem, we obtain

Corollary 4.6. A matching problem followed by the Nash bargaining (Example 4.1)

always admits a stable matching.

Corollary 4.7. A matching problem followed by the Kalai-Smorodinsky bargaining

(Example 4.2) need not admit a stable matching.

The remainder of this section first proves the sufficiency part of the theorem and then

comments on the proof of the necessity part. The section ends with a discussion which

assumptions may be dropped and which assumptions may be relaxed.

The proof of the sufficiency part is in two steps. The first step shows that under the

assumptions of the theorem there is a metaranking. The second step of the proof is to

show that if there is a metaranking, then there is a group stable matching. This step is

identical to the second step of the argument in Section 2, and hence is skipped.

A metaranking is defined as follows.

Definition 4.8 (Metaranking). A metaranking is a transitive relation 4 on all

coalitions such that for any i ∈ I and C,C 0 3 i,

C -i C
0 ⇐⇒ C 4 C 0.
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An example of metaranking is the per-member value of a coalition in a matching

followed by the equal division of value. Pycia (2005), the working paper version of

this paper, shows that the fear of ruin coefficient defined by Aumann and Kurz (1977a,

1977b)13 is a metaranking in a matching followed by Nash bargaining.14

We thus reduced the proof of the sufficiency part of Theorem 4.5 to the following.

Proposition 4.9 (Existence of Metaranking). Suppose that all firms are able

to employ at least two workers (Mf ≥ 2 for f ∈ F ). If a regular division rule is pairwise

aligned, then for each induced preference profile there is a metaranking.15

Proof. Because of monotonicity, D (a, C, v0) = D (a,C, v) implies v = v0, and hence

D (b, C, v0) = D (b, C, v). Thus, we can define the payoff translation functions

tCb,a : [0,∞)→ [0,∞)

for each coalition C and agents a, b ∈ C by the condition

tCb,a (D (a, C, v)) = D (b, C, v) , v ≥ 0.

For any a, b ∈ C ∩ C 0, the pairwise alignment guarantees that tCb,a = tC
0

b,a. Hence we can

omit the superscript C in the notation for the payoff translation functions. Since there is

a firm able to employ two workers, so tb,a is defined whenever at least one of the agents

a and b is a worker.

Choose an arbitrary reference worker w∗ and fix the value function v : C → R+.

Because of the full-range assumption, tw∗,a (D (a, C,v (C))) is well defined for any agent

a and coalition C 3 a even when w∗ /∈ C. By pairwise consistency,

tw∗,a (D (a,C,v (C))) = tw∗,a0 (D (a
0, C,v (C)))

for any different a, a0 ∈ C. Indeed, if w∗ ∈ C then the claim follows straightforwardly

from the pairwise consistency. If w∗ /∈ C, then first consider the case when a is a firm

13In the notation of Example 4.1., the fear of ruin coefficient is defined as Ui(si)−Ui(0)
U 0
i(si)

.
14The existence of metaranking is a strong and desirable property of a matching setting. For example,

Pycia (2005), shows that if there is a metaranking, then stable matchings are obtained as Strong Nash

Equilibria (cf. Aumann (1959) and Rubinstein (1980)) of a broad class of non-cooperative matching

games.
15This proposition further implies that if allotments (and hence payoffs) are determined by a regular

pairwise-aligned division rule then the stable matching is unique for generic value functions.
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and a0 is a worker. Since a is able to employ two workers, {a, a0, w∗} is a coalition. By
the full-range assumption, there is a value function v0 : C → R+ such that

D (a0, C,v0 (C)) = D (a0, {a, a0, w∗} ,v0 ({a, a0, w∗})) , and

v0 (C) = v (C) .

Then, the pairwise alignment implies that also

D (a,C,v0 (C)) = D (a, {a, a0, w∗} ,v0 ({a, a0, w∗})) .

Since w∗ ∈ {a, a0, w∗}, we have

tw∗,a (D (a, C,v (C))) = tw∗,a (D (a, C,v
0 (C)))

= tw∗,a (D (a, {a, a0, w∗} ,v0 ({a, a0, w∗})))

= tw∗,a0 (D (a
0, {a, a0, w∗} ,v0 ({a0, a0, w∗})))

= tw∗,a0 (D (a
0, C,v0 (C)))

= tw∗,a0 (D (a
0, C,v (C))) .

In the remaining case, both a and a0 are workers. Then C contains also a firm f , and by

the preceding argument

tw∗,a (D (a,C,v (C))) = tw∗,f (D (f, C,v (C))) = tw∗,a0 (D (a
0, C,v (C))) .

Consequently,

χ (C) = tw∗,a (D (a,C,v (C)))

does not depend on a if C is fixed. The monotonicity of the division rule implies that

χ (C) determines a metaranking. This completes the proof.

The necessity part of Theorem 4.5 will be proved when we prove a stronger Theorem

5.13. The proof is in the appendix to Section 5, and makes two steps. A first step

considers certain configurations of coalitions C1,2, C2,3, C3,1 such that there is an agent

ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ..., 3 (we adopt the convention that subscripts are modulo

3 that is Ci,i+1 = C3,1 if i = 3 and Ci−1,i = C3,1 if i = 1). In these configurations, if

C1,2 ∼a2 C2,3 and C2,3 ∼a3 C3,1 then C1,2 ∼a1 C3,1. The second steps shows then this

property implies pairwise alignment.
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Let us finish this section with the discussion of assumptions. First notice, that for

regular division rules the pairwise alignment assumption may be formally relaxed in the

following way.

Remark 4.10. If a regular division rule induces preferences such that

C ∼i C
0 ⇐⇒ C ∼j C

0

for all i, j ∈ C,C 0 ∈ C, then the division rule is pairwise aligned.16

The regularity assumptions may be considerably relaxed. Before discussing how they

are relaxed in Section 5, let us notice that even for the sufficiency results, it is not

enough to assume that a single preference profile is pairwise aligned. The following

situation illustrates the problem.

Example 4.11. There are three workers w1, w2, w3 and three firms f1,2, f2,3, f3,1. Let

us adopt the convention that the subscripts are modulo 3, that is, wi+1 = w1 if i = 3.

Assume that only three firm-worker coalitions {fi,i+1, wi, wi+1}, i = 1, 2, 3, create positive
payoffs for their members. Let the payoffs in coalition {fi,i+1, wi, wi+1} be such that wi

obtains 2 and wi+1 obtains 1.

In this example, the resultant preferences of agents are pairwise aligned. At the

same time, there is no group stable matching. There are stable matchings given by the

partitions {{fi,i+1, wi, wi+1} , {fi+1,i+2} , {fi+2,i} , {wi+2}}, i = 1, 2, 3. It is easy to modify
the example so that there is no stable matching. It is enough to assume that agents’

payoffs in coalitions {fi+1,i+2, wi+2} are negligible, but positive.

The next section relaxes Theorems 4.5 and Proposition 4.9 in several ways. First,

the monotonicity and continuity assumptions, as well as the assumption that there are

at least two firms, are not needed in the sufficiency part of Theorem 4.5 and Proposition

4.9 (cf. Theorems 5.2 and 5.11).17

16Proof. Fix i, j ∈ I and C,C0 3 i, j. It is enough to consider the case i 6= j and C 6= C 0. Assume

that the value function v is such that C -i C
0 in the induced preference profile -I . Use the full-range

assumption to find a value function v0 such that v0 (C) = v (C) and C ∼0i C0 in the induced preference
profile -0I . By the assumption of the lemma C ∼0j C 0. The monotonicity of the division rule implies

that v0 (C 0) ≤ v (C 0) and hence C -j C
0. This completes the proof.

17In addition, the full range assumption may be relaxed to require only that {D (i, C, v) : v ≥ 0} =
{D (i, {i} , v) : v ≥ 0} .

15



Second, the results may be presented in terms of ordinary preference profiles. Section

5 does that and relaxes the full-range assumption. As Example 4.11 shows, some weak

variant of the full-range assumption is necessary for the results to hold.

Third, Section 5 removes the restriction that all firms are able to employ at least two

workers. Theorem 5.9 replaces this restriction with an assumption on one-worker firms,

that is, firms that can employ at most one worker. In particular, the sufficient condition

of Theorem 5.9 is satisfied, for instance, in the Gale and Shapley (1962) marriage markets

and other settings that do not admit a metaranking.

5. Preference Formulation of Stability Conditions

This section presents sufficient and necessary conditions for stability in terms of

agents’ ordinal preferences over coalitions. Recall that Example 4.11 shows that the

pairwise alignment of preferences alone does not guarantee that a stable matching ex-

ists. The present section shows that a preference profile admits a stable matching if the

pairwise-alignment assumption is satisfied by the preference profile and by some related

profiles of preferences. In problems of Section 4 these related profiles are generated by

a division rule. In the present section we will impose the pairwise alignment restriction

directly on a domain of preference profiles. This section also shows that a preference

profile may be embedded into a pairwise-aligned domain of profiles if and only if the

profile satisfies a relaxed metaranking condition (defined below).

To introduce our results, let us consider a simple matching problem with payoffs

determined in Nash bargaining. Suppose that two firms f1, f2 and two workers w1, w2

match on date 1. On this date, they are not able to commit to terms of employment.

On date 2, each coalition creates a value and divides it according to the Nash bargaining

solution. A stable matching exists in this setting as shown in Corollary 4.6. The following

alternative argument for the existence of stable matching in this simple matching problem

illustrates the mechanics of the proof of the general sufficiency results (Theorems 5.2 and

5.9) of this section..

If a stable matching does not exist, then there would be a cycle of coalitions such that

each coalition contains an agent who strictly prefers the next coalition in the cycle. For

example, worker w1 would prefer {f2, w1, w2} to {f1, w1}, firm f1 would prefer {f1, w1}
to {f1, w2}, and worker w2 would prefer {f1, w2} to {f2, w1, w2}.
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To show that this cannot happen, let us consider an auxiliary matching situation

between firms f1, f2 and workers w1, w2 in which (i) the agents still divide the values

according to the Nash bargaining solution, (ii) the values created by all coalitions except

for C = {f1, w1, w2} are the same as in the original matching situation, and (iii) the value
created by coalition C is such that worker w2 is indifferent between C and {f2, w1, w2}.
In this auxiliary situation, the preferences of agents between coalitions from the above

cycle are unchanged. The preferences are pairwise aligned because they are induced by

Nash bargaining. Because of the pairwise alignment of preferences between w2 and w1,

worker w1 would be indifferent between C and {f2, w1, w2}, and hence w1 would prefer
C to {f1, w1}. Again, because of the pairwise alignment of preferences between w1 and

f1, firm f1 would prefer C to {f1, w1}, and hence to {f1, w2}. Firm f1’s strict preference

for C over {f1, w2} would contradict the pairwise alignment of preferences of f1 and w2

over coalitions C and {f1, w2}.
This contradiction proves that the cycle we started with cannot occur in the auxil-

iary situation, and hence it cannot occur in our example. So far, we have analyzed an

illustrative cycle. To complete the proof and conclude that a stable matching exists, we

need to show that there are no other cycles. The argument that there are no other cycles

builds on the above analysis and is further developed following the statement of Theorem

5.2, and is completed in the appendix.

The role of Nash bargaining in the above heuristic argument is to ensure that there

is an auxiliary situation in which the preferences are pairwise aligned, worker w2 is

indifferent between C and {f2, w1, w2}, and preferences between coalitions other than C

are inherited from the original preference profile. Nash bargaining may be replaced in

the above example by any other full-range division rule. Thus, the argument whose main

thrust is presented above may be used to prove the sufficiency part of Theorem 4.5 even

if we drop the monotonicity and continuity assumptions.

In fact, the above heuristic argument requires only that the preference profile whose

stability we analyze is embedded in a domain of pairwise-aligned profiles that is rich in

the following sense.

Definition 5.1 (Rich Domain). A domain of preference profiles R is rich if for

any agent a ∈ I, any coalitions C,C 0 3 a such that #C,#C 0 ≥ 3, and any -I∈ R,
there exists a profile -0I∈ R such that C ∼0a C 0 and all agents’ -0I preferences between
coalitions other than C are the same as in -I .
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The domains of preference profiles generated in the examples of Sections 2 and 4 for

different value functions v : C → R+ are rich. Any full-range division rule induces a rich

domain of preference profiles.18 The domain of all profiles in any matching problem is

also rich.

The main result of the paper is that if a preference profile belongs to a rich domain

of pairwise-aligned profiles, then there exists a stable matching. This result contains the

sufficiency part of Theorem 4.5.

Theorem 5.2 (Sufficiency). Suppose that all firms are able to employ at least

two workers (Mf ≥ 2 for f ∈ F ). If a preference profile -I belongs to a rich domain of

pairwise aligned preference profiles, then -I admits a matching that is group stable.

A heuristic argument for why we may expect Theorem 5.2 to be true was presented

at the beginning of this section. Let us develop it using the following notion.

Definition 5.3 (Blocking Cycle). A blocking cycle of length m ≥ 2 is a set of
coalitions C1,2, C2,3, ..., Cm,1 such that

(a) For i = 1, ...,m there exists ai ∈ Ci−1,i ∩ Ci,i+1 and Ci−1,i -ai Ci,i+1.

(b) There exists i such that Ci−1,i ≺ai Ci,i+1 and Ci−1,i or Ci,i+1 (or both) has three or

more members.

The proof of the theorem has two main steps. The first step shows that there are no

blocking cycles. The second step shows that if there are no blocking cycles then there

exists a group stable matching. Let us first discuss, the more difficult first step, and then

the easier second step.

A blocking cycle cannot have length 2. Indeed, C2,1 -a1 C1,2 -a2 C2,1 and the pairwise

alignment imply that C2,1 ∼a1 C1,2 ∼a2 C2,1. A blocking cycle cannot have length 3 when

18Denoting by ui (C) agent i utility from joining coalition C, and by uI the profile of utilities of agents

i ∈ I, we may express a utility counterpart of the rich domain condition as follows. For any agent a ∈ I,

coalitions C,C0 3 a, and any utility profile uI there exists utility profile u0I such that u
0
a (C) = u0a (C

0)

and u0j

³
C̃
´
= uj

³
C̃
´
for all j ∈ I and coalitions C̃ 6= C. A natural question one may ask is whether

on any rich domain of preference profiles one may impute utilities so that the above utility counterpart

of richness is satisfied. In general, the answer is no. A counterexample is presented in Pycia (2005), the

working paper draft of the present results.
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one of the agents a1, a2, a3 is a firm. Indeed, assume that there is a cycle

C3,1 -a1 C1,2 -a2 C2,3 -a3 C3,1

and C3,1 has three or more members. If two or three of the agents a1, a2, a3 are firms,

then this is the same firm, and one can use the transitivity of this firm’s preferences and

the pairwise-alignment assumption to show that agents a1, a2, a3 are indifferent between

relevant coalitions in the cycle. If exactly one of the agents a1, a2, a3 is a firm, then there

is a coalition C = {a1, a2, a3} and we may use a slightly modified argument from the

opening of this section.

If C is different from the coalitions C3,1, C1,2, C2,3, then there exists a pairwise-aligned

preference profile -0I∈ R such that

C ∼0a3 C3,1

and

C3,1 -0a1 C1,2 -
0
a2
C2,3 -0a3 C3,1

and such that -I-indifferent agents are -0I indifferent. A repeated application of the

pairwise-alignment property of -0I , shows that

• a1 is -0I indifferent between C and C3,1, and thus prefers C to C1,2;

• a2 prefers C to C1,2, and thus to C2,3; and

• a3 prefers C to C2,3, and thus to C3,1.

None of the preferences in the cycle may be strict, as otherwise a3 would strictly prefer

C to C3,1, contrary to a3’s indifference between these two coalitions.

If C equals one of the coalitions C3,1, C1,2, C2,3, then we can repeat the above argument

without the need to refer to the rich domain. Hence, in both cases, we find that the cycle

C3,1 -a1 C1,2 -a2 C2,3 -a3 C3,1 is not blocking.

To show that there are no other blocking cycles requires overcoming some obstacles.

The main obstacle is the lack of a single coalition containing all agents a1, ..., am. In fact,

such a coalition does not exist if two of the agents are firms. Even when the cycle has

length 3 and all agents a1, a2, a3 are workers, there may not exist a coalition containing
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all three agents if all firms are able to employ at most two workers. How to overcome

this obstacle is shown in the proof presented in the appendix.19

The second step in the proof of Theorem 5.2 is easier. It requires us to show that the

lack of blocking cycles is a sufficient condition for stability. One could show it directly. Let

us take, however, a slightly longer route, in order to re-express this sufficient condition in

a more informative way, and highlight the connection with the existence of metarankings.

First let us define a relaxed metaranking.

Definition 5.4 (Relaxed Metaranking). A relaxed metaranking is a transitive

relation 4 on all coalitions such that

(1) For each agent i ∈ I, and coalitions C,C 0 3 i,

C -i C
0 implies C 4 C 0.

(2) For each agent i ∈ I, and coalitions C,C 0 3 i such that at least one of C,C 0 has

three or more members,

C 4 C 0 implies C -i C
0.

Each metaranking is also a relaxed metaranking. In the marriage problem, an identity

relation on coalitions is a relaxed metaranking for any preference profile of the agents.

Roughly speaking, a relaxed metaranking has two properties: (i) the coalitions higher

in the ranking are preferred to the coalitions lower in the ranking by all relevant agents,

and (ii) if two coalitions share the same level in the ranking, then either each of the two

coalitions has at most two members or all relevant agents are indifferent between the two

coalitions. In the appendix we show the following.

Lemma 5.5. There exists a relaxed metaranking if and only if there are no blocking

cycles.

Given the equivalence between the lack of blocking cycles and the existence of relaxed

metarankings, to complete the second step in the proof of Theorem 5.2 it is enough to

show the following.

19Theorem 5.2 is proved as a corollary of more general Theorem 5.9, which relaxes the assumption

that all firms are able to employ at least two workers. The proof of Theorem 5.9 is in the appendix.
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Proposition 5.6 (Sufficiency). If there exists a relaxed metaranking, then there is

a group stable matching.

Proof. The theorem is true if I contains only one agent. To prove the general case

by induction, let us assume that the theorem is true for any proper subset of I.

Let 4 be a relaxed metaranking. Consider the family of coalitions

Cmax = {C : there does not exist coalition C 0 such that C ≺ C 0} ,

which is non-empty since there is only a finite number of coalitions and 4 is transitive.
If there is C0 ∈ Cmax such that #(C0) ≥ 3, then notice that C0 %i C for any

i ∈ C0 and C 3 i. By the inductive assumption, there exists a partition {C1, ..., Ck} that
corresponds to a group stable matching on I − C0. Then {C0, C1, ..., Ck} is a partition
of I that determines a group stable matching.

In the remaining case, all C ∈ Cmax have two or fewer members. Consider a one-to-
one matching between firms from F and workers fromW with preferences inherited from

-I . By Gale and Shapley’s (1962) result, there exists a group stable matching in this

new problem; let

Q = {C 0
1, ..., C

0
K}

be a partition of I that corresponds to such group stable matching. We can assume that

C 0
1, ..., C

0
k ∈ Cmax and C 0

k+1, ..., C
0
K /∈ Cmax for some k ≥ 0. Notice that for any C 0 ∈ Cmax,

any agent i ∈ C 0 strictly prefers C 0 to any C /∈ Cmax containing i. Indeed, if C 0 -i C

then C 0 4 C, and hence C ∈ Cmax. Thus, k ≥ 1.
By the inductive assumption, there is a group stable many-to-one matching on I −

C 0
1 − ...− C 0

k. Let

{C 00
1 , ...., C

00
m}

be the corresponding partition of I − C 0
1 − ...− C 0

k.

Now, it is enough to notice that C 0
1, ..., C

0
k, C

00
1 , ..., C

00
m is a group stable many-to-one

matching on I. Indeed, if it is not group stable then there would exist a blocking group

A that includes an agent a ∈ C 0
i for some i ∈ {1, ..., k}. Agent i would prefer a coalition

C to C 0
i. There would be two options. If C ∈ Cmax, then matching Q would not be group

stable, contrary to its construction. If C /∈ Cmax, then C 0
i Âa C (by the same argument

that we used above to show that k ≥ 1). This strict preference would contradict the
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assumption that C 0
i -a C. This completes the proof.20

Theorem 5.2 presumed that each firm is able to employ at least two workers. If

there are firms that cannot employ more than one worker, then the pairwise alignment

condition is no longer sufficient for stability,21 as the following example demonstrates.

Example 5.7. Let F = {f1, f2} and W = {w1, w2}. Let the firms’ employment
capacities equal Mf1 = 1 and Mf2 = 2. Let the preference profile -I be such that

{f1, w1} Âw1 {f2, w1, w2} Âw1 {f2, w1} Âw1 {w1} ,

{f2, w1, w2} Âw2 {f1, w2} Âw2 {f2, w2} Âw2 {w2} ,

{f1, w2} Âf1 {f1, w1} Âf1 {f1} , and

{f2, w1, w2} Âf2 {f2, w2} Âw2 {f2, w1} Âw2 {f2} .

In this example there does not exist a stable matching. The reason is that in a stable

matching one of the coalitions {f1, w1} , {f2, w1, w2} , {f1, w2} would need to form, but

{f1, w1} Âw1 {f2, w1, w2} Âw2 {f1, w2} Âf1 {f1, w1} .

At the same time, -I is pairwise aligned and the domain of all pairwise-aligned preference

profiles is rich.

Thus, in order to extend Theorem 5.2 to cases of many-to-one matching with one-

worker firms, i.e., firms with employment capacity Mf = 1, we need an additional as-

sumption. The assumption is based on the idea of blocking one-worker firm, i.e., a

one-worker firm that belongs to a blocking-like cycle of three coalitions.

Definition 5.8 (Blocking One-Worker Firm). A firm f unable to employ more

than one worker is a blocking one-worker firm if there exists workers w,w0 ∈ W and a

20In fact, this proof demonstrates that a slightly weaker condition is sufficient for group stability. This

condition says that in any subset of agents either there is a coalition that is weakly preferred by all its

members to all other coalitions in the subset, or there is a group of one- and two-member coalitions that

are weakly preferred by all its members to any coalition not in the group. This condition is weaker than

both the existence of relaxed metaranking and the Banerjee, Konishi, and Sönmez (2001) top coalition

property mentioned in the introduction.
21One-to-one matching is an exception. If the matching is one-to-one, then all profiles are pairwise

aligned and admit stable matchings.
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coalition C 3 w,w0 such that

{f,w} %w C %w0 {f,w0} %f {f,w} ,

with one preference strict.

Using this notion we may state the following.

Theorem 5.9 (Sufficiency). If a preference profile belongs to a rich domain of

pairwise-aligned preference profiles and there are no blocking one-worker firms, then

there is a matching that is group stable. Moreover, there exists a relaxed metaranking.

This result contains Theorem 5.2 because in the latter there are no one-worker firms.

This strengthened result covers the Gale and Shapley marriage market in which all

preference profiles are pairwise aligned and no one-worker firm can be blocking because

there are no cycles of three coalitions. There are no cycles of three coalitions because

there are no firms able to employ two workers.

The heuristic for Theorem 5.9 is identical to the one for Theorem 5.2. The proof is

presented in the appendix.

Before presenting the main necessity result, let us discuss two results connecting pair-

wise alignment, relaxed metarankings, and metarankings. The first result is an observa-

tion that every preference profile that admits a relaxed metaranking may be embedded

in a rich domain of pairwise aligned preference profiles.

Proposition 5.10. (a) If a preference profile admits a relaxed metaranking, then it

is pairwise aligned and there are no blocking one-worker firms.

(b) The domain of profiles admitting a relaxed metaranking is rich.

The proof of (a) is straightforward. The proof of (b) is in the appendix.

The second result says when pairwise alignment on a domain of preferences implies

that there exists a metaranking.

Theorem 5.11 (Existence of Metaranking). Suppose that there is a firm able

to employ two or more workers and that a domain of preference profiles R satisfies the

following condition. For any agent i ∈ I, coalitions C,C 0 3 i, and any-I∈ R, there exists
a profile -0I∈ R such that C ∼0w C 0 and all agents’ -0I-preferences between coalitions
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other than C are the same as in -I . If preference profiles in domain R are pairwise

aligned and are such that there are no blocking one-worker firms, then each preference

profile in R admits a metaranking.

The proof relies on the same ideas as the proofs of Theorems 5.2 and 5.9, and is

presented in the appendix. It is easy to modify the proof of Proposition 5.10 to show

that the domain of preference profiles admitting a metaranking satisfies the domain

condition of Theorem 5.11.

Let us finish with a necessity counterpart of our results. The assumptions are for-

mulated using the following notion of a perturbation of preference profile that (i) keeps

all preferences between coalitions except for a reference coalition C, and (ii) perturbs

agents’ preferences over C in a co-monotonic way.

Definition 5.12 (Monotonic C-Perturbation). Given a coalition C, we say that

a preference profile -0I is a monotonic C-perturbation of a profile -I if:

• For any agent j ∈ I and coalitions C1, C2 6= C containing j we have

C1 -0j C2 ⇐⇒ C1 -j C2.

• If there is i ∈ C and C 00 3 i such that C %i C
00 and C ≺0i C 00, then for any j ∈ I

and C 0 3 j, if C -j C
0, then C ≺0j C 0.

• If there is i ∈ C and C 0 3 i such that C -i C
0 and C Â0i C 0, then for any j ∈ I and

C 0 3 j, if C %j C
0 then C Â0j C 0.

For instance, the domain of preferences generated by a monotonic full-range division

rule contains all monotonic C-perturbations of any profile from the domain.

Theorem 5.13 (Necessity). Suppose that either there are at least two firms able

to employ two or more workers each, or that there are no such firms. Suppose also that

a domain of preferences R satisfies the following conditions:

(1) For any agent i ∈ I, coalitions C,C 0 3 i such that #C 0 ≥ 3, and any -I∈ R, there
exists a monotonic C-perturbation -0I∈ R such that C ∼0i C 0.
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(2) For any agent i ∈ I, coalitions C,C 0 3 i, and any -I∈ R, there exists a monotonic
C-perturbation -0I∈ R such that C -0i C 0.

(3) For any agent i ∈ I, coalitions C,C 0 3 i, and any -I∈ R such that C ∼i C
0, there

exists a monotonic C-perturbation -0I∈ R such that

• C Â0i C 0.

• for any j ∈ C if C 00 Âj C then C 00 Â0j C.

• for any j ∈ C if C 00 ≺j C then C 00 ≺0j C.

Then, if all profiles from R admit pairwise-stable matchings, then all profiles from R are

pairwise aligned and are such that there are no blocking one-worker firms.22

This theorem generalizes the necessity part of Theorem 4.5 and is proved in the

appendix. The two main steps of the proof are discussed in Section 4. The final step

makes use of the following.

Remark 5.14. As in Remark 4.9, if a domain of preference profiles R satisfies (1),

and for all i, j ∈ C,C 0 ∈ C,
C ∼i C

0 ⇐⇒ C ∼j C
0,

then preferences in R are pairwise aligned.

The next section applies the theoretical results of the paper to some examples.

6. Applications and Examples

The results of Section 4 were illustrated with stability properties of the Nash and

Kalai-Smorodinsky bargaining solutions.23 The present section discusses three further
22In particular, all profiles from R admit relaxed metaranking. One may also notice that the domain

of all preference profiles that admit a relaxed metaranking satisfies the assumptions (1)-(3).

23The Nash bargaining example may be generalized to the asymmetric Nash bargaining model

where agent i has bargaining power λi and the division of value v in coalition C maximizesQ
i∈C (Ui (si)− Ui (0))

λi over si ≥ 0, i ∈ C, subject to
P

i∈C si ≤ v. Furthermore, when the bar-

gaining power of a worker w is λw = 0, this worker becomes a wage taker indifferent to all employment

options, and a stable matching still exists.
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examples in which the results of Section 4 are applicable. The division rules considered

are Tullock’s (1980) rent-seeking game, linear sharing rules, and the maximization of

welfare objective. This section also characterizes the class of regular and Pareto opti-

mal division rules that are pairwise aligned, and hence induce the existence of stable

matchings.

As in Section 2 and Examples 4.1 and 4.2, this section considers the following setting.

There are two dates. On date 1, firms and workers match but do not contract. The agents’

preferences are determined by their allotments on date 2. On date 2, each coalition C

realizes an allotment profile from the set of feasible allotment profiles

V (C) =

(
(si)i∈C ∈ R#C+ :

X
i∈C

si ≤ v (C)
)
,

where v (C) is the value of coalition C and v : C → R+ is the value function. We

allow the allotments si to represent expected payoffs from lotteries over a larger space of

outcomes.

Rent-seeking. On date 2, agents in each formed coalition C = {a1, ..., ak} engage in
Tullock’s (1980) rent-seeking game over a prize v (C). Each ai ∈ C will be able to lobby

at cost ci to capture the prize v (C) with probability ci
c1+...+ck

. Thus, if agents expand

resources c1, ..., ck then agent ai obtains in expectation

ci
c1 + ...+ ck

v (C)− ci.

The agents play the Nash equilibrium of this rent-seeking game; every agent lobbies at

cost k−1
k2
v (C) and has expected payoff v(C)

k2
. By Theorem 4.5, there is a stable matching

in any matching problem with payoffs determined by the Tullock rent-seeking.

Linear sharing rules. On date 2, agents divide the value using a coalition-specific

linear sharing rule. The share of agent i in the value created by coalition C is ki,C. This

agent obtains the allotment

si = ki,Cv (C) .

The shares ki,C > 0 are coalition-specific,
P

i∈C ki,C = 1, and ki,C do not depend on the

realization of v (C).

In this case, the pairwise-alignment requirement takes the following simple form.
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Corollary 6.1 (Sufficiency). If agents divide the values using a linear sharing rule

with shares ki,C, then there exists a stable matching if

ki,C
kj,C

=
ki,C0

kj,C0

for all C,C 0 and i, j ∈ C ∩ C 0.24

This corollary is an immediate consequence of Theorem 4.5 because linear sharing

rules with ki,C > 0 are regular. Notice that this corollary follows from Theorem 4.5 even

if there are firms that can employ only one worker. We need, then, to reinterpret each

such firm as being able to employ two workers, but generating the value 0 if employing

two workers.

The condition on shares ki,C is also necessary, in the following sense.

Corollary 6.2 (Necessity). Suppose that there are at least two firms able to employ

two or more workers each. If agents divide the values using a linear sharing rule with

shares ki,C, and there exists a stable matching for all value functions v : C → R+, then

ki,C
kj,C

=
ki,C0

kj,C0

for all C,C 0 and i, j ∈ C ∩ C 0.

This corollary is an immediate consequence of the necessity part of Theorem 4.5.

Notice, that if agents’ utilities are Ui (s) = sλi, then the Nash bargaining of Example

4.1 will lead to the linear division of value, and the resultant sharing rule will satisfy the

above condition. Corollary 6.2 implies a partial converse of this statement. If there are

firms able to employ two workers, and a profile of shares ki,C guarantees an existence of

stable matching for all v : C → R+ then the shares ki,C may be rationalized as coming

from Nash bargaining.

Welfare maximization and Pareto optimal division rules. Each formed coali-

tionC chooses an allotment profile
¡
sCi
¢
i∈C ∈ R#C+ that maximizes the Bergson-Samuelson

separable welfare functional

max
(sCi )i∈C

X
i∈C

Wi (si) .

24Banarjee, Konishi, and Sönmez (2001) showed that this class of linear sharing rules leads to non-

empty core in one-sided coalition formation. Pycia (2006) constructs a slightly larger class of linear

sharing rules that guarantees the non-emptiness of the core in one-sided coalition formation. Only the

linear sharing rules from this larger class guarantee that the core is non-empty for all value functions v.
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subject to
P

i∈C si ≤ v (C). The welfare components Wi, i ∈ I, are increasing and

concave. They are agent-specific, but not coalition-specific.

Lensberg’s (1987) results imply that allotments
¡
sCi
¢
i∈C are pairwise aligned.

25 In-

deed, χ (C) = W 0
i (si), for some i ∈ C, determine a metaranking. Hence, we obtain the

following.

Corollary 6.3 (Sufficiency). If payoffs are determined by the maximization of a

Bergson-Samuelson separable welfare functional, then there is a stable matching.

Lensberg’s (1987) results also suggest that all Pareto optimal26 and continuous divi-

sion rules that produce pairwise-aligned profiles may be interpreted as the maximization

of a Bergson-Samuelson separable welfare functional. His results cannot be directly ap-

plied in the present context, both because he considers a one-sided problem27 and because

he effectively assumes the pairwise alignment of preferences for a much larger space of

applications of the choice rule than is available in our context. The appendix provides a

simple proof of the following many-to-one result inspired by Lensberg (1987).

Proposition 6.4. Suppose that all firms are able to employ at least two workers. Let

D be a Pareto-optimal and regular division rule. If D induces pairwise-aligned preference

profiles, then there exist increasing strictly concave differentiable functions Wi : Ui → R

for i ∈ I such that W 0
i (0) = +∞, and

(D (i, C,v (C)))i∈C = arg max
s∈V (C)

X
i∈C

Wi (si) .

This proposition,28 implies the following.

25Lensberg (1987) studies the consistency of solution concepts. the pairwise alignment of preference

profiles is related to the consistency requirement as, in many environments, a consistent solution con-

cept generates pairwise aligned preferences. The consistency of solution concepts’ idea was introduced

by Harsanyi (1959) in his analysis of the independence of irrelevant alternatives in Nash bargaining.

Lensberg (1987,1988), Thomson (1988), Lensberg and Thomson (1989), Hart and Mas-Collel (1989),

and Young (1994) analyzed consistency in the context of Nash bargaining, welfare functions, Walrasian

trade, the Shapley value, and sharing rules. Thomson (2004) gives an up-to-date survey of these results.
26A division rule is Pareto optimal if the payoff profile in each coalition C ∈ C is Pareto optimal in

V (C).
27For instance, Lensberg assumes that any collection of agents can form a coalition, while in many-

to-one matching two firms cannot form a coalition.
28Both in Proposition 6.4 and Corollary 6.5, it is enough to assume that agents’ payoff are Pareto
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Corollary 6.5 (Necessity). Suppose that there are at least two firms and that all

firms are able to employ at least two workers. Let D be a Pareto-optimal and regular

division rule. If D induces preference profiles that admit stable matchings, then there

exist increasing strictly concave differentiable functions Wi : Ui → R for i ∈ I such that

W 0
i (0) = +∞, and

(D (i, C,v (C)))i∈C = arg max
s∈V (C)

X
i∈C

Wi (si) .

7. Conclusion

The two main contributions of the present paper are an examination of the stability

properties of division rules and establishing the pairwise-alignment condition for stabil-

ity. This novel condition may be used to study matching with complementarities and

peer effects. The paper shows that there exists a group stable (and hence pairwise sta-

ble) matching if a regular division rule generates pairwise aligned preferences. Pairwise

alignment is also a necessary condition for pairwise stability (and hence group stability).

The sufficiency and necessity results allow one to determine which sharing rules,

bargaining protocols, or games induce the existence of stable matchings. There is always

a stable matching if agents’ preferences are induced by Nash bargaining or Tullock’s

(1980) rent-seeking game. The paper also applies the sufficiency and necessity results to

(i) characterize the class of linear sharing rules that always induce agents’ preferences

such that a stable matching exists, and (ii) characterize the class of regular and Pareto

optimal division rules that induce the existence of stable matchings.

Looking at a division rule instead of individual preferences provides a partial res-

olution to Hatfield and Milgrom (2005) and Kojima and Hatfield (2007) impossibility

results on stability of matching problems in which there are complementarities between

workers. In a very general model without peer effects, they showed that a weak version

of substitutability is the most general condition that — imposed on preferences of each

optimal in a subset V 0 (C) of the quasi-linear set V (C) as long as the Pareto frontier of each V 0 (C)

is continuous in the value v (C). The regularity assumption may be replaced by the monotonicity and

full-range assumptions as any monotonic, full-range, and Pareto-optimal division rule is continuous, and

hence regular.
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agent separately — guarantees the existence of a stable matching. In this connection,

the present paper shows that there are stability conditions applicable to settings with

complementarities when agents’ payoffs are co-determined through division rules.

A natural direction to extend the results of the present paper would be to general-

ize them to the Hatfield and Milgrom (2005) model of matching with contracts. This

model incorporates as special cases the college admission setting, in which agents have

preferences over coalitions, the setting in which wages are determined during matching,

and the ascending package auctions. Under certain conditions,29 such an extension of

the results of the present paper is possible if there are two categories of workers. The

first category encompasses the workers, such as crucial researchers in a biotech R&D

lab, with whom it is not possible to write contracts because of the incompleteness of

the contractual environment and the inherent complexity of the relationship between the

firm and these workers. These workers might provide complementary inputs to the firm

production process. The second category includes workers, such as lab assistants, with

whom the firm may contract but whose inputs are substitutable.

The focus of the present paper is understanding when there exist stable matchings.

In consequence, the presented sufficiency and necessity results provide a step toward

understanding what interventions promote stability in matching markets. For example,

consider the matching between interns (or residents) and US hospitals described by Roth

(1984) and Roth and Peranson (1999). This matching is organized by the Association of

American Medical Colleges, the Council on Medical Education of the American Medical

Association, and the American Hospital Association that act as a social planner. The

medical associations want the resultant matching to be stable because, historically, the

lack of stability led to the unravelling of the intern-hospital matching process. The main

instrument used by the associations is the matching algorithm. However, the associa-

tions and other policy making bodies also promote stability, or its lack, through their

impact on the institutionally embedded division of value between interns and hospitals.30

29This extension requires an assumption similar to the lack of blocking one-worker firms assumed in

Theorem 5.9.
30A recent example of such an impact is the 2003 regulation by the Accreditation Council for Graduate

Medical Education that limits the residents’ working hours. The majority of residents surveyed by

Niederee, Knudtson, Byrnes, Helmer, and Smith (2003), and Brunworth and Sindwani (2006) supported

the restriction while the majority of teaching hospitals’ faculty opposed it.

An earlier example of a similar intervention were the restrictions on the number of consecutive hours

residents may work imposed by the Bell Commission after Libby Zion died in the New York Hospital

30



Understanding the impact of the division of value on stability would thus help the associ-

ations to assess the impact of their policies on the relevant matching market and medical

apprenticeship system.
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Appendix

Proof of Theorem 5.2. This theorem follows from Theorem 5.9 proved below.

Proof of Lemma 5.5. (=⇒) For an indirect proof, consider coalitionsC12, C23..., Cm1

such that ai ∈ Ci−1,i∩Ci,i+1, i ∈ {1, ...,m}, satisfy conditions (a) and (b) of the definition
of blocking cycle. By symmetry, we can assume that #(Cm,1) ≥ 3 and Cm,1 ≺a1 C1,2.

Then C1,2 4 C2,3, C2,3 4 C3,4, etc., and by transitivity C1,2 4 Cm,1. Thus C1,2 -a1 Cm,1,

contradicting Cm,1 ≺a1 C1,2.

(⇐=) Define relation 4 so that C 4 C 0 whenever there exists a sequence of coalitions

Ci,i+1 ∈ C such that

• C = C1,2,

• C 0 = Cm,m+1, and

• there is an agent ai ∈ Ci−1,i ∩ Ci,i+1 such that Ci−1,i ≺ai Ci,i+1.

Then 4 is transitive. It remains to verify conditions (1) and (2). To prove (1) take

C1,2 = C, C2,3 = C 0 and a1 = i. To prove (2), assume that C or C 0 has three or more

members, that i ∈ C ∩ C 0, and that C 4 C 0. Now, if C Âi C
0, then there would exist a

blocking cycle; hence C -i C
0. This completes the proof.

Lemma 5.9.1 (for the proof of Theorem 5.9). Let the profile -I belong to a rich

domain R of pairwise-aligned preference profiles. Assume that there are no blocking

one-worker firms. Then there are no cycles of three coalitions C1,2, C2,3, C3,1 ∈ C such
that

(a) there is an agent ai ∈ Ci−1,i ∩ Ci,i+1,

(b) C3,1 %a3 C2,3 %a2 C1,2 %a1 C3,1 with at least one strict preference.

Proof. For an indirect proof, assume that there are coalitions C1,2, C2,3, C3,1 ∈ C and
agents a1, a2, a3 that satisfy conditions (a) and (b) of the lemma. Consider the following

four cases

Case 1: a1, a2, a3 ∈ F . Then a1 = a2 = a3 is a firm whose preferences are circular,

which is a contradiction.

Case 2: a1, a2 ∈ F, a3 ∈ W . Then a1 = a2 and we can shorten the cycle to m = 2,

and use the argument from the discussion in Section 5 to derive a contradiction.
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Case 3: a3 ∈ F, a1, a2 ∈ W . The case of firm a3 able to employ two workers was

discussed in Section 5. If a3 is able to employ at most one worker, then C3,1 = {a1, a3}
and C2,3 = {a2, a3} and a contradiction follows from the lack of blocking one-worker

firms.31

Case 4: a1, a2, a3 ∈ W . Then, either ai = ai+1 for some i = 1, 2, 3 and the pairwise

alignment directly yields a contradiction, or all ai are different and each Ck,k+1 has three

members and contains a firm able to employ two workers. Take any firm f0 ∈ F able to

employ two workers (Mf ≥ 2); then {a1, f0, a2} , {a2, f0, a3} , {a3, f0, a1} ∈ C. Without
loss of generality we can assume that

C1,2 ≺a2 C2,3. (1)

Furthermore, we can assume that

C1,2 ∼a2 {a2, f0, a3} , (2)

C2,3 ∼a3 {a3, f0, a1} , (3)

C1,2 ∼a1 {a1, f0, a2} . (4)

Indeed, take the first of these indifferences. If C1,2 = {a2, f0, a3} then it is true; if
C1,2 6= {a2, f0, a3} then use the rich domain assumption to find a preference profile in R
such that the above indifference is true and all preferences not involving {a2, f0, a3} are
preserved. The remaining two indifferences may be obtained in an analogous way.

Combining (1) and (2) gives {a2, f0, a3} ≺a2 C2,3. By the pairwise-alignment assump-

tion {a2, f0, a3} ≺a3 C2,3, and hence (3) and the pairwise alignment give

{a2, f0, a3} ≺f0 {a3, f0, a1} . (5)

Moreover, we have

{a2, f0, a3} ∼f0 {a1, f0, a2} , (6)

as otherwise (2) and (4) would imply that

C1,2 ∼a1 {a1, f0, a2} ¿f0 {a2, f0, a3} ∼a2 C1,2

contrary to what we proved in Case 3.

Finally, combining (a), (3), (5), (6), (4), and (a) we obtain

C3,1 %a3 C2,3 ∼a3 {a3, f0, a1} Âf0 {a2, f0, a3} ∼f0 {a1, f0, a2} ∼a1 C1,2 %a1 C3,1.

31This is the only place in the proof that uses the lack of blocking one-worker firms.
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contrary to what we proved in Case 3 for the cycle C3,1 %a3 {a3, f0} %f0 {f0, a1} %a1 C3,1.

This completes the proof.

Proof of Theorems 5.9. For an indirect proof, assume that -I belongs to a rich

domain R of pairwise-aligned preference profiles and that -I does not admit a stable

matching. By Proposition 5.6 and Lemma 5.5, there exists m ≥ 2 and a blocking cycle
of coalitions C12, C23..., Cm1 ∈ C and agents a1, ..., an that satisfy conditions (a) and (b)
of Definition 5.3.

If m = 2 then the pairwise alignment yields a contradiction, and if m = 3 then

Lemma 5.9.1 does. For an inductive argument, fix m ≥ 4, and assume that there are no
blocking cycles of strictly fewer than m coalitions.

Step 1. Notice that aj 6= aj+2 for all j = 1, ...,m. Indeed, if aj = aj+2, then the

pairwise alignment implies that Cj,j+1 -aj Cj+1,j+2, and at least one of the cycles

Cm,1 -a1 ... -aj−1 Cj−1,j -aj Cj+1,j+2 -aj+2 ... -am Cm,1

and

Cm,1 -a1 ... -aj Cj,j+1 -aj Cj+2,j+3 -aj+3 ... -am Cm,1

satisfies (a) and (b) and is composed ofm−1 coalitions, which is contrary to the inductive
assumption.

Step 2. There exists k such that#Ck,k+1 ≥ 3, and at least one of the agents ak+2, ak+3
is a worker. By (b) there exists i such that Ci−1,i ≺ai Ci,i+1, and #Ci,i+1 ≥ 3 or

#Ci−1,i ≥ 3. If ai+2, ai+3 ∈ F then ai+2 = ai+3, and the cycle

Cm,1 -a1 ... -ai+1 Ci+1,i+2 -ai+2 Ci+3,i+4 -ai+4 ... -am Cm,1

has m − 1 coalitions and satisfies (a) and (b).32 This contradiction proves the claim of

Step 3.

Step 3. By Step 2, we can assume that a3 is a worker, and #Cm,1 ≥ 3 or #C1,2 ≥ 3.
Let us define a three-member coalition C that contains a1 and a3 in two cases.

• If a1 ∈ F then set C = {a1, a3, w} for some worker w ∈ Cm,1 ∪ C1,2 such that

w 6= a3. Such a worker w exists, and a1 can hire at least two workers, because one

of the coalitions Cm,1, C1,2 has two workers.

32The condition (b) is satisfied because i− 1 6= i+2modm and i 6= i+2modm for m ≥ 4, and hence
Ci−1,i, Ci,i+1 are in the shorter cycle.
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• If a1 ∈ W then set C = {a1, a3, f} where f is a firm that can employ two workers

(such a firm exists if there exists a blocking cycle).

By Step 1, a1 6= a3 and hence C has indeed three members.

Step 4. Assume that C = Ci,i+1, for some i = 1, ...,m (the complimentary assumption

is considered in Step 5). Look at C1,2, C2,3, C and conclude from Lemma 5.9.1 that either

C1,2 ≺a1 C, or C2,3 Âa3 C, or C ∼a1 C1,2 ∼a2 C2,3 ∼a3 C.

• If C1,2 ≺a1 C = Ci,i+1 then i 6= 1 and the shorter cycle

Ci,i+1 -ai+1 Ci+1,i+2 -ai+2 ... -am Cm,1 ≺a1 Ci,i+1

satisfies (a) and (b) because Cm,1 -a1 C1,2 ≺a1 C = Ci,i+1 and #(C) ≥ 3. This is
impossible, however, by the inductive assumption.

• If C2,3 Âa3 C = Ci,i+1 then i 6= 2 and the shorter cycle

Ci,i+1 ≺a3 C3,4 -a4 ... -ai Ci,i+1

satisfies (a) and (b) because C ≺a3 C2,3 -a3 C3,4 and #(C) ≥ 3. Again, this is
impossible by the inductive assumption.

• If C ∼a1 C1,2 ∼a2 C2,3 ∼a3 C then the cycle C,C3,4..., Cm,1 is blocking contrary to

the inductive assumption.

Step 5. Finally consider the case C 6= Ci,i+1 for all i. If #(Cm,1) ≥ 3 then use the
rich domain assumption to find a pairwise-aligned preference profile -I∈ R such that

there are no blocking one-worker firms, and all preferences along the blocking cycle are

preserved and C ∼a1 Cm,1. If #(Cm,1) < 3 then #(C1,2) ≥ 3 and use the rich domain
assumption to find a pairwise-aligned preference profile -I∈ R such that there are no

blocking one-worker firms, and all preferences along the blocking cycle are preserved

and C ∼a1 C1,2. Abusing notation let us refer to the new profile as -I . In both cases

Cm,1 -a1 C -a1 C1,2.

• If C ≺a3 C2,3, then consider the collection of m− 1 coalitions C,C3,4, C4,5, ..., Cm,1.

This is a blocking cycle of length m− 1 because C ≺a3 C2,3 -a3 C3,4 and #C ≥ 3.
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• If C %a3 C2,3, then consider the collection of three coalitions C1,2, C2,3, C. Since

C -a1 C1,2, the collection C1, C2, C satisfies

C -a1 C1,2 -a2 C2,3 -a3 C.

By Lemma 5.9.1 all agents are then indifferent. But then C,C3,4..., Cm,1 is a block-

ing cycle of m−1 coalitions, contrary to the inductive assumption. This completes
the proof.

Proof of Proposition 5.10(b). Take i ∈ I and coalitions C,C 0 3 i such that

#C,#C 0 ≥ 3 and assume that a profile-I admits a relaxed metaranking4. To prove the
claim it is enough to construct a preference profile -0I that admits a relaxed metaranking,
and such that (i) C ∼0i C 0, and (ii) all agents -0I preferences between coalitions other
than C are same as -I . Let -0I be determined by (ii) for coalitions other than C, and

let preferences between C and any other coalition C 00 be determined as follows:

C -0j C 00 ⇐⇒ C 0 4 C 00 and C 00 -0j C ⇐⇒ C 00 4 C 0, for j ∈ C ∩ C 00.

We will show that the transitive relation 40 identical to 4 for coalitions other than C

and such that

C 40 C 00 ⇐⇒ C 0 4 C 00 and C 00 40 C ⇐⇒ C 00 4 C 0

is a relaxed metaranking for preference profile -0I .
It is enough to verify conditions (1) and (2) defining the relaxed metaranking in case

of comparisons of C and a some coalition C 00.

Condition (1) is satisfied because C -0i C 00 means that C 0 4 C 00, and hence C 0 40 C 00.

A similar argument works if C 00 -0i C.
Condition (2) is satisfied for C, irrespective of whether C or C 00 has three or more

members. Indeed, if C 40 C 00 and the claim of the implication is false, that is, C Â0j C 00,

then C 0 Â C 00; and thus C Â0 C 00, which would be a contradiction. A similar argument

works if C 00 40 C. This completes the proof.

Lemma 5.11.1 (for the proof of Theorem 5.11). Fix preference profile -I . If there

are no cycles of coalitions C12, C23..., Cm1 ∈ C for any m ≥ 2 such that

(a) there exists ai ∈ Ci−1,i ∩ Ci,i+1 for i = 1, ...,m and Ci−1,i -ai Ci,i+1,
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(b) at least one preference is strict Ci−1,i ≺ai Ci,i+1,

then -I admits a metaranking.

Proof. Define relation4 so that C 4 C 0 whenever there exists a sequence of coalitions

Ci,i+1 ∈ C0 such that

• C = C1,2,

• C 0 = Cm,m+1,

• there is an agent ai ∈ Ci−1,i ∩ Ci,i+1 such that Ci−1,i ≺ai Ci,i+1.

This is a transitive relation on coalitions, and it is straightforward to verify that this

relation is a metaranking. This completes the proof.

Proof of Theorem 5.11. For an indirect proof, assume that -I∈ R does not

admit a metaranking. By Lemma 5.11.1, there exists m ≥ 2 and a cycle of coalitions
C12, C23..., Cm,1 ∈ C and agents a1, ..., am that satisfy conditions (a) and (b) of the lemma.
If m = 2 then the pairwise alignment yields a contradiction, and if m = 3 then

Lemma 5.9.1 does. For an inductive argument, fix m ≥ 4, and assume that there are no
blocking cycles of strictly fewer than m coalitions.

Step 1. For any i at least one agent ai or ai+1 is a worker as otherwise ai = ai+1 and

the shorter cycle

Cm,1 -a1 ... -ai−1 Ci−1,i -ai Ci+1,i+2 -ai+2 ... -am Cm,1

satisfies (a) and (b) contrary to the inductive assumption.

Step 2. There exists ak and ak+2 that are both workers. By Step 1, there exists ai

who is a worker. If now ai+2 is a firm, then Step 1 implies that both ai+1 and ai+3 are

workers.

Step 3. By Step 2, we may assume that a1 and a3 are workers. Take a firm f able to

employ two or more workers, and set C = {a1, a3, f}.
A straightforward adaptation of Steps 4 and 5 of the proof of Theorem 5.9 gives a

required contradiction and completes the proof.

Lemma 5.13.1 (for the proof of Theorem 5.13). Assume that a domain R of pref-

erence profiles satisfies the conditions (2)-(3) of Theorem 5.13 and that all profiles in
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R admit pairwise-stable matchings. Assume that C1,2, ..., C3,1, a1, ..., a3 are such that

ai ∈ Ci−1,i ∩ Ci,i+1 (all subscripts modulo 3), and that

(a) if ai ∈W then {ai} = Ci−1,i ∩ Ci,i+1, and

(b) if ai ∈ F then Ci,i+1 = {ai} ∪ S ∪ {ai+1} for some S ⊂ Ci−1,i.

Then, if C3,1 ∼a1 C1,2, and C1,2 ∼a2 C2,3, then C2,3 %a3 C3,1.

Proof. For an indirect proof assume that there exists a cycle C1,2, ..., C3,1 that satisfies

(a), (b), and C3,1 ∼a1 C1,2, C1,2 ∼a2 C2,3, and C2,3 ≺a3 C3,1. Using conditions (2) and (3)

we will modify the preference profile and construct a profile in R that does not admit

a pairwise-stable matching. At each step of the procedure let us continue to denote the

current profile by -I .

Step 1. Use (3) with C = C2,3 and i = a2 to find a preference profile -I∈ R such

that C3,1 ∼a1 C1,2, C1,2 ≺a2 C2,3, and C2,3 ≺a3 C3,1. Then, use (3) with C = C1,2 and

i = a1 to find -I such that C3,1 ≺a1 C1,2, C1,2 ≺a2 C2,3, and C2,3 ≺a3 C3,1.

Step 2. For all agents i ∈ C1,2 ∪ ... ∪ C3,1, and all coalitions C 3 i different from

C1,2, C2,3, C3,1, use (2) to find -i∈ R such that C -i Ck,k+1 for k = 1, ..., 3. Then, use

(3) to find -I∈ R such that C ≺i Ck,k+1 for k = 1, ..., 3 and all i ∈ I, and C 3 i different

from C1,2, C2,3, C3,1.

Step 3. For each i = 1, 2, 3 fix a sequence of coalitions

C1
i,i+1 ⊂ C2

i,i+1 ⊂ ... ⊂ C
#Ci,i+1
i,i+1 = Ci,i+1

such that

• C1
i,i+1 = {fi} for some fi ∈ F,

• Ck+1
i,i+1 = Ck

i,i+1 ∪
©
aki
ª
for some aki ∈W , k = 1, ...,#Ci,i+1 − 1,

• ami
i = ai, a

mi−1
i = ai+1.

Recursively in k, use (2) to modify the preference profile — while preserving all strict

preferences of Steps 1 and 2 — so that C -a Ck
i,i+1 for any agent a ∈ Ck

i,i+1 and any

coalition C 3 a different from Ck+1
i,i+1, ..., C

#Ci,i+1
i,i+1 , k = 2, ...,#Ci,i+1, i = 1, 2, 3. Then, use

(3) to obtain strict preferences C ≺a Ck
i,i+1 for any agent a ∈ Ck

i,i+1 and any coalition

C 3 a different from Ck+1
i,i+1, ..., C

#Ci,i+1
i,i+1 , k = 2, ...,#Ci,i+1, i = 1, 2, 3. At the same
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time maintain the preferences C3,1 ≺a1 C1,2 ≺a2 C2,3 ≺a3 C3,1,and C ≺a Ci,i+1for all

a ∈ C ∩ Ci,i+1.

The resultant profile of preferences belongs toR and does not admit a pairwise-stable

matching. This completes the proof.

Lemma 5.13.2 (for the proof of Theorem 5.13). Suppose that there are at least two

firms able to employ two or more workers each. Let R be a domain of preference profiles

satisfying the condition (1) of Theorem 5.13. Assume that each profile-I∈ R satisfies the
claim of Lemma 5.13.1: for every cycle C1,2, ..., C3,1, a1, ..., a3 such that ai ∈ Ci−1,i∩Ci,i+1

and the conditions (a) and (b) are true we have

C3,1 ∼a1 C1,2, and C1,2 ∼a2 C2,3 imply C2,3 %a3 C3,1.

Then, if A,B ∈ C, B ⊂ A, #(A−B) = 1, and a, b ∈ B, then A ∼a B implies A ∼b B.

Proof. Take A,B ∈ C such that B ⊂ A, #(A−B) = 1, and take a, b ∈ B. If a = b

then the claim is true. If a 6= b, then #B ≥ 2 and #A ≥ 3. Moreover, then A ∩ B

contains a firm that can hire two or more workers. Consider three cases.

Case 1: a, b ∈ W . As there are at least two firms, there exists c ∈ F − A − B.

Consider the cycle A, {b, c} , {a, c}. Find -I∈ R so that {a, c} ∼a A and {b, c} ∼b A

while preferences between coalitions different than {b, c} , {a, c} are preserved. Let us
continue using the symbol -I for new profile.

Lemma 5.13.1 implies that {a, c} ∼c {b, c}. Now, B ∼a A implies B ∼a {a, c},
and Lemma 5.13.1 applied to the cycle B, {a, c} , {b, c} gives B ∼b {b, c}. Hence, B ∼b

{b, c} ∼b A.

Case 2: a ∈ F, b ∈ W . Take c ∈ A− B ⊂ W and f ∈ F2 − {a}; f exists since there
are at least two firms able to employ two or more workers each. Let

C = A− {b} = (B ∪ {c})− {b}

and

C 0 = {b, c, f} .

Note that C ∩C 0 = {c} and A ∩C 0 = {b} , so condition (a) of Lemma 5.13.1 is satisfied
for the cycle C,C 0, A and all its permutations. Moreover, firm a ∈ A∩C, and both A−C
and C−A are singletons or empty. Hence also condition (b) is satisfied. Thus, the claim
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of Lemma 5.13.1 is satisfied for the cycle C,C 0, A. Similarly, the claim Lemma 5.13.1

is satisfied for the cycle C,C 0, B. The structure of the subsequent argument resembles

Case 1.

Using (1), find a preference profile -I∈ R that preserves preferences between coali-

tions other than C 0 and such that

C 0 ∼b A.

Using (1) again, find a profile -I∈ R that preserves preferences between coalitions other
than C and such that C ∼c C

0. Now, Lemma 5.13.1 applied to the cycle C,C 0, A gives

C ∼a A.

Since A ∼a B was preserved in the above changes of the preference profile, by transitivity

of agent a’s preferences we have

B ∼a C.

Furthermore, c is indifferent between C and C 0. Thus, Lemma 5.13.1 applied to B,C,C 0

gives

C 0 ∼b B.

Since b was also shown to be indifferent between C 0 and A, we have B ∼b A as required.

Case 3: a ∈ W, b ∈ F . After renaming the agents, we can assume that a ∈ F, b ∈ W

and A ∼b B, and use an analogue of Case 2 argument. This completes the proof.

Proof of Theorem 5.13. If there are no firms able to employ two or more workers

each, then all preference profiles are consistent and there are no blocking one-worker

firms.

If there are at least two firms able to employ two or more workers each, then apply

Lemmas 5.13.1 and 5.13.2 to show that for all i, j ∈ C,C 0 ∈ C, all profiles satisfy the
condition

C ∼i C
0 =⇒ C ∼j C

0.

Remark 5.14 then shows that all profiles are pairwise aligned. The lack of blocking

one-worker firms follows directly from Lemma 5.13.1. This completes the proof.

Proof Proposition 6.4. The proof of Proposition 4.7 for regular division rules,

presented in Section 4, constructs the payoff translation functions

tb,a : [0,∞)→ [0,∞)
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for any agents a, b such that one of them is a worker. Recall that for each coalition

C 3 a, b, and any v ≥ 0, we have

tb,a (D (a,C, v)) = D (b, C, v) .

By the monotonicity of division rule D, functions tb,a are strictly increasing. Since D

generates Pareto optimal profiles, functions tb,a are continuous.

Choose an arbitrary reference worker w∗ and define

ψa (s) = f (tw∗,a (s)) , s ∈ [0,∞) , a ∈ I,

where f : [0,∞) → R is a decreasing function such that f (s) → +∞ as s → 0+, and

such that all ψa are right hand side integrable at 0. Notice that there exists a function

f that satisfies these conditions. Indeed, the functions tw∗,a for a ∈ I are all continuous,

increasing, and have value 0 at 0. Take

tmin = min
a∈I

{tw∗,a}

and notice that it is also continuous and increasing, and has value 0 at 0. The functions

ψa are integrable if f ◦ tmin is. This will be so if, for example,

f (t) =

∙
1

(tmin)−1 (t)

¸2
.

Moreover, f is decreasing (since tmin is increasing), and f (s)→ +∞ as s→ 0+ (because

tmin (t)→ 0 as t→ 0). Notice that ψa are positive and strictly decreasing and define,

Wa (s) =

Z s

0

ψa (τ) dτ.

Now, Wa are concave and increasing.

It remains to be shown that the solution to

max
s̃∈V (C)

X
a∈C

Wa (s̃a) =
X
a∈C

Z s̃a

0

ψa (τ) dτ

where

V (C) =

(
(si)i∈C ∈ R#C+ |

X
i∈C

si ≤ v

)
coincides with D (a,C, v). Concavity of the problem implies that there is a solution.

Since the slope at 0 for each
R s̃a
0

ψa (τ) dτ is infinite, so the solution is internal. The
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differentiability of the objective function implies that the internal solution is given by

the first order Lagrange conditions

ψa (s̃a) = λ

and the feasibility constraint (s̃a) |a∈C ∈ V (C). The first order condition can be rewritten

as

tw∗,a (s̃a) = f−1 (λ)

or

s̃a = ta,w∗
¡
f−1 (λ)

¢
.

If there is no worker in C, then C = {f} for some f ∈ F and the Pareto optimality of D

yields the claim. Otherwise, fix a worker w ∈ C and notice that for agents a ∈ C

D (a, C, v) = ta,w (D (a,C, v)) .

Lemma 5.9.1 from the appendix implies

ta,w∗ ◦ tw∗,w = ta,w.

Hence,

D (a,C, v) = ta,w∗ (tw∗,w (D (a,C, v))) = ta,w∗ (x)

for some x ∈ R that does not depend on a.

This equation, the analogous equation for s̃a above, the monotonicity of ta,w∗, the

Pareto optimality of the division rule, and the feasibility constraint (s̃a) |a∈C ∈ V (C)

imply that

s̃a = D (a,C, v) .

This completes the proof.
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