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Abstract

We study the assignment of indivisible objects in environments, such as school
choice, in which transfer payments are not used. Our main result shows that every
efficient assignment can be decentralized through prices. We thus establish the Second

Welfare Theorem for the no-transfer environments with possibly satiated agents.

1 Introduction

A classic insight of the Walrasian theory of markets, commonly referred to as the Second
Welfare Theorem, is that every Pareto efficient assignment can be decentralized through the

1 This classic insight is predicated on the assumption that agents are locally

use of prices.
non-satiated, an assumption that is readily satisfied in settings with money.?2 However, the
non-satiation assumption fails in settings without money such as the assignment of school
seats in school choice programs. The assignment of scarce resources in these settings has
been intensively studied recently and Pareto efficiency is a commonly accepted goal for such
assignments.?

What assignments are efficient in settings without transfers? Does the insight of the

Second Welfare Theorem remain valid in such settings? We address these questions in the

*Universitat Autonoma de Barcelona - Barcelona Graduate School of Economics, and University of Cal-
ifornia Los Angeles, respectively. We would like to thank Salvador Barbera, Roland Benabou, Dirk Berge-
mann, Simon Board, Sergiu Hart, Andrew McLennan, Jordi Masso, Moritz Meyer-ter-Vehn, Michael Richter,
William Thomson, Utku Unver, William Zame, Simpson Zhang, and seminar participants at UAB and UCLA
for helpful comments.

! This classic insight, also known as the Second Fundamental Theorem of Welfare Economics, was con-
jectured by Pareto (1909), and subsequently refined and developed by many authors, culminating in the
definitive treatment by Arrow (1951) and Debreu (1951).

2Local non-satiation requires that for any agent and any assignment there is a nearby assignment that
the agent strictly prefers, for instance because it leaves him with more money.

3See e.g. Abdulkadiroglu and Sonmez (2003).



canonical no-transfer assignment model of Hylland and Zeckhauser (1979). There is a finite
set of agents and objects. Each agent’s utility is given by their von Neumann-Morgenstern
valuations, and agents evaluate lotteries according to the expected utility theory.* Following
Hylland and Zeckhauser, we study Walrasian equilibria in which each agent is endowed with
token money; the amount of token money held after the assignment has no impact on agents’
utilities.

We establish the Second Welfare Theorem in this environment: despite the lack of trans-
fers and the possibility of satiation, every efficient assignment may be supported in a Wal-
rasian equilibrium that is decentralized via prices, just as Pareto efficient assignments in
environments with transfers can be. In market design contexts, our characterization of ef-
ficient assignments allows one to restrict attention to price mechanisms at least in settings,
such as large markets, where such mechanisms are incentive compatible.® In particular, every
Pareto efficient assignment may be implemented as an outcome of Hylland and Zeckhauser’s
mechanism with properly chosen budgets.

The problems the received approach to the Second Welfare Theorem runs into in settings
with locally satiated agents are well-known (Mas-Collel, Winston, and Green, 1995), and
hence it is rather surprising that the insight of the Second Welfare Theorem holds true in the
canonical no-transfer environment we study.® Indeed, whether the Second Welfare Theorem
obtains in settings without transfers and with possibly satiated agents remained a puzzle
except for deterministic assignments. For deterministic assignments, Abdulkadiroglu and
Sonmez (1998) established a version of the Second Welfare Theorem; they showed that each
deterministic assignment may be obtained via a serial dictatorship. Every serial dictatorship
can be implemented via budgets and prices, but there are many efficient allocations that
cannot be implemented via serial dictatorships; as we show they all can be implemented via

prices.”

4We first analyze the case where each agent demands at most one object, as in school seat assignment,
and we then extend our results to the setting in which agents may demand multiple objects.

5The large market incentive compatibility of the mechanisms that set the prices endogenously has been
established by Azevedo and Budish (2013). Price mechanisms are also incentive compatible in settings
in which we can set prices exogenously, for instance when we have at least an approximate sense of the
distribution of preferences, see Pycia (2014). He, Miralles, and Yan (2012) discuss interval incentives in
two-sided markets.

6The First Welfare Theorem also obtains in our environment. It was established by Hylland and Zeck-
hauser (1979), and further refined by Mas-Collel (1992) and Budish, Che, Kojima, and Milgrom (2013).
For instance, all equilibria are efficient if agents strictly rank any two objects. There are, of course, many
environments in which the First Welfare Theorem holds true, and the Second Welfare Theorem fails, see
Mas-Collel et al (1995).

"Random allocations cannot be implemented by deterministic serial dictatorships. As pointed out by
Bogomolnaia and Moulin (2001), randomization over serial dictatorship is not necessarily efficient. Further-
more, notice that serial dictatorships elicit only agents’ ordinal information, and as shown by Abdulkadiroglu,
Che, and Yasuda (2011) mechanisms eliciting only ordinal information may lead to inefficient outcomes; this



In order to prove the Second Welfare Theorem we develop a new approach to the proof
because the failure of local non-satiation implies that the Separating Hyperplane Theorem
commonly used to prove the Second Welfare Theorem guarantees only the existence of a sep-
arating hyperplane that may have non-empty intersections with the set of Pareto-dominant
aggregate assignments.® Facing the resulting prices, some agents might afford to buy bun-
dles they strictly prefer over their assignment; this situation is called a quasi-equilibrium.
In contrast, we prove the existence of a separating hyperplane that is disjoint with the set
of Pareto-dominant aggregate assignments. Facing the resulting prices, no agent can afford
a bundle they would prefer over their assignment, and the prices support the assignment as
an equilibrium. We provide two proofs of this result: a direct proof and a proof that builds
on McLennan’s (2002) Separating Hyperplane Theorem.”

Prior work on no-transfer assignments related price mechanisms to efficiency but only in
conjunction with other strong requirements. In continuum economies, Thomson and Zhou
(1993) related efficient, symmetric, and consistent mechanisms to Hylland and Zeckhauser’s
mechanism, and Ashlagi and Shi (2014) showed that any efficient, symmetric, and strategy-
proof random assignment can be expressed as the result of the Hylland and Zeckhauser
mechanism.'® In contrast, we do not rely on symmetry, consistency, or strategy-proofness,
and we prove our results for all finite economies.!!

Finally, we contribute to the literature on the Second Welfare Theorem beyond the stan-
dard exchange economy model. Anderson (1988) proved the Second Welfare Theorem for
exchange economies with nonconvex preferences; in contrast with us, he maintained the as-
sumption of local non-satiation. Richter and Rubinstein (2014) propose a general convex
geometry approach to welfare economics based on the concept of “primitive equilibrium,”
where a strict linear ordering arranges alternatives in order to create “budget” sets. They

prove a Second Welfare Theorem for the primitive equilibrium concept; when preferences

inefficiency does not necessarily vanish as the market becomes large, as shown by Pycia (2014).

8While the full separation obtains if one of the separated sets is open, this assumption fails in our setting.
Section 3 provides an example illustrating the failure of openness, and a more detailed discussion of why the
standard techniques do not work.

9We would like to thank Andrew McLennan for suggesting the second of these two approaches. The
advantage of the proof based on McLennan’s Separating Hyperplane Theorem is that it provides more
information about the structure of the problem while the direct approach establishes the theorem with
minimal conceptual structure. For prior work employing McLennan’s theorem, see Manea (2008) and Carroll
(2010).

10Makowski, Ostroy, and Segal (1999) showed a similar result for the classical exchange economies.

Related to our work are also other papers relying on the idea of using token money to allocate objects
in the absence of transfers. Token money mechanisms have been extended beyond the canonical Hylland
and Zekchauser setting by, for instance, Sonmez and Unver (2010), Budish (2013), Manjunath (2014), and
Miralles (2014). Hafalir and Miralles (2014) analyze the utilitarian efficiency of such market approaches.
None of these papers establishes a Second Welfare Theorem.



are strictly monotone, their primitive equilibrium concept corresponds to the standard equi-
librium concept, however, when specialized to our setting, this equilibrium concept becomes

equivalent to the quasi-equilibrium discussed above.!?

2 Model

We study a finite economy with agents i,j € I = {1,...,||} and indivisible objects x,y €
X = {1,..,|X|}. Each object = is represented by a number of identical copies |z| € N.
By S = (|z|)zex we denote the total supply of object copies in the economy. If agents have
outside options, we treat them as objects in X; in particular, this implies that »__ 2| > |1].

We assume initially that agents demand at most one copy of an object; we relax this
assumption in Section 5. We allow random assignments and denote by ¢F € [0,1] the
probability that agent i obtains a copy of object x. Agent i’s random assignment ¢; =

| X

(q},...,q;"") is a probability distribution. The economy-wide assignment (¢7)  1s feasible

icl, ze
if > .c;q7 < |z|. Let A denote the set of economy-wide random assignments, and F C A
denote the set of feasible random assignments. We call an assignment pure, or deterministic,
if each of its elements ¢” is either 0 or 1. By the Birkhoff-von Neumann theorem, a feasible
random assignment can be expressed as a lottery over feasible pure assignments.

Agents are expected utility maximizers, and agent ¢’s utility from random assignment g;
x

equals the scalar product u;(¢;) = v; - ¢; where v; = (v}

ey € 10, 00) ¥l is the vector of agent

1’s von Neumann-Morgenstein valuations for objects = € X.

We study the connection between two concepts: efficiency and equilibrium. A feasible
random assignment Q* € F is Pareto efficient (or, simply, efficient) if no other feasible
random assignment @) € F is weakly preferred by all agents and strictly preferred by some
agents.

A random assignment Q* and a price vector p* constitute an equilibrium for a budget
vector w* € RK' if Q* is feasible, p*-¢F < w} forany ¢ € I, and w;(¢;) > u;(qf) = p*-q; > w}
for any (¢;),c; € A

12In Section 3 we provide an example of a quasi-equilibrium which is not an equilibrium; this quasi-
equilibrium is a primitive equilibrium in the sense of Richter and Rubinstein. To the best of our knowledge
the above discussion covers all extensions of the Second Welfare Theorem beyond the standard strictly
monotone and convex setting. Of course, the literature on Walrasian equilibria beyond this setting is richer,
and—in addition to the papers cited above (including in footnotes)—includes, for instance, Bergstrom (1976),
Manelli (1991), and Hara (2005) who focused on equilibrium existence and core convergence rather than on
the Second Welfare Theorem.



3 Main Result: The Second Welfare Theorem

Our main result is the counterpart of the second welfare theorem for the setting without

transfers.

Theorem 1. (The Second Welfare Theorem) If Q* € F is Pareto-efficient, then there
is a vector of budgets w* € RK' and a vector of prices p* € ]RLLX‘ such that Q* and p* constitute

an equiltbrium with budgets w*.

Before laying out the proof, let us compare our problem to the standard second wel-
fare theorem with transfers and preferences that are convex and strictly monotonic. The
well-known argument in the standard setting relies on the celebrated separating hyperplane
theorem and it goes as follows. The set of aggregate feasible assignments is convex, and,
given an efficient assignment Q* = (¢;),.; we want to implement, the set of (infeasible)
aggregate assignments that Pareto dominate QQ* is convex as well. Since these two sets are
disjoint, the separating hyperplane theorem tells us there exists a hyperplane that separates
them. The normal vector to this hyperplane gives us a price vector p*, and the separation

means that

ui(qs) > wi(q;) = p* - qi > wj (1)

for any i € I and for any (¢;),.; € A. In other words, the separating hyperplane theorem
allows us to find a price vector p* that implements the efficient assignment QQ* as a so-called
quasi-equilibrium.

The final step of the standard proof is then to show that this quasi-equilibrium is in fact
an equilibrium, that is

ui(q) > wi(q;) = p* - ¢ > wy (2)

for any i € I and for any (¢;),c; € A. This last step is by contradiction: we take an
assignment Q = (¢;),c; that Pareto dominates Q* while costing the same as Q*; in the
neighborhood of () we then find an assignment that still Pareto dominates ()* while being
cheaper than it. This is a contradiction as in quasi-equilibrium no cheaper assignment can
Pareto dominate Q*.

It is this final step of the standard proof that fails in our setting. The standard separating
hyperplane theorem separates the Pareto dominating assignments from the feasible ones, in
the sense of inequality (1), but it does not fully separate the two sets, in the sense of
inequality (2). Unlike in the standard setting, in the setting with locally satiated preferences
and without transfers, not every quasi-equilibrium is an equilibrium. The reason is as follows.

In the standard setting with strongly monotone preferences no good can have a price of zero
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Figure 1: The simplex of “full-consumption” aggregate assignments. Assignment A (Q*) is
on the intersection of the boundaries of sets Y and Z.

since agents would demand an infinite amount of such a good. In contrast, zero prices are the
staple of our setting as recognized already by Hylland and Zeckhauser (1979). In particular,
in a quasi-equilibrium an agent may be assigned a zero-price object while he strictly prefers

another zero-price object. As an illustration consider the following example.

Example 1. Consider an economy with four agents and three objects. Two of the agents
have von Neumann-Morgenstern utility vector v = (%, 0,1), and the remaining two agents
have the utility vector v = (0, 1, %) Suppose that there are three copies of object 1, one copy
of object 2, and one copy of object 3. The following allocation @Q* is then Pareto-efficient:
%, 0, %) and v’-agents obtain ¢* = (%, %, ).

The resulting aggregate assignment A (Q*) is (2,1,1). Figure 1 places this point in the

v-agents obtain ¢* = (

barycentric simplex of aggregate assignments in which exactly four units are assigned, that is
such that for each agent the sum of probabilities of the three goods is 1 (the full-consumption
simplex). Set Y represents feasible aggregate assignments in the simplex; it is the triangle
spanned by (2,1,1),(3,0,1) and (3,1,0). Set Z represents all aggregate assignments A (Q)
in the simplex such that there exists an assignment () in which all agents are weakly better-
off than under Q* and at least one agent is strictly better-off, and such that A (Q) is the
aggregate assignment of () (these assignments are, of course, not feasible). Set Z has five

corners:

e (2,1,1), the aggregate assignment corresponding to Q*,
e (1,2,1), the aggregate assignment when v-agents obtain ¢* and v’-agents obtain (0, 1, 0),

e (0, 2%, 1%), the aggregate assignment when v-agents obtain (0, }l, %) and v’-agents ob-
tain (0,1,0),

e (0,0,4), the aggregate assignment when each agent obtains good 3

6



e (1,0,3), the aggregate assignment when v-agents obtain ¢* and v’-agents obtain (0,0, 1).

Only the middle three corners belong to Z, and one of the borders of Z, the dashed line, is
disjoint with Z. In particular, the set Z is neither open nor closed.

Restricting attention to the assignments in the simplex, there is a horizontal hyperplane
separating Y and Z. This hyperplane corresponds to prices p? > p?* = p! = 0. When
v-agents have budget %p3 and v'-agents have budget zero, these prices support Q* as a
quasi-equilibrium but not as an equilibrium. Indeed, v'-agents would rather buy a sure copy
of object 2 than the lottery ¢*, and both these outcomes have the price of zero.

We develop a new proof approach to establish the second welfare theorem and to address
the difficulties illustrated in Example 1. To understand our approach observe that in Example
1, there are non-horizontal hyperplanes that fully separate Y and Z (in the full-consumption
simplex). We show that this is always the case. A key step in the proof is the following
new Separating Hyperplane Theorem that establishes that under conditions that—as we
will shortly see—are always satisfied in the no-transfer assignment problem, full separation

is possible.

Lemma 1. (Full Separation Lemma) Suppose Y C R" is a closed and convex polytope,
suppose Z C R™ is convex and non-empty, and Z C R™ is a closed and convex polytope
containing Z. Suppose further that ZNY = 0 and that for ally € YNZ, 5§ € R, ande > 0
ify+08 € Z, theny—ed ¢ Z. Then, there exists a price vector p € R and a budget w € R
such that for any z € Z and y € Y we have p-z > w > p -y and such that for any z € Z
andy €Y we havep-zZ > w > p-y.

We provide the proof of the lemma in the appendix.

We can easily visualize the statement of the lemma in the context of Example 1. Both the
set Y of feasible aggregate assignments and the set Z of (infeasible) aggregate assignments
that Pareto dominate Q* are polytopes. Our separation lemma says that if every line through
Q* and a point in Z has points that belong to the closure of Z only on one side of *, then
there exists a fully separating hyperplane. The line assumption is satisfied in our example.

The rest of the proof of the second welfare theorem revolves around showing that indeed
the assumption of the lemma is satisfied: no line through @* can intersect the closure of Z
on both sides of Q* (see the highlighted claim in the proof below).

Proof of the Second Welfare Theorem. For any random assignment ) € A, we
define the aggregate assignment A (@) associated with @ to be >, ¢;, and we write Q > Q*

when u;(g;) > w;(q}) for every i € I with at least one strict inequality.



We can assume that no agent 7 obtains their most-preferred object. Indeed, suppose each
agent in set J C I obtains his or her most preferred object, and that Q*|;_; and p* are an
equilibrium for some profile of budgets. Then, Q* and p* are an equilibrium for the same
budgets of agents in I — J and any sufficiently high budgets of agents in J.

Let Z = {A(Q): Q> QF, Q € A}, and notice that the above assumption implies that
7 is non-empty. Furthermore, Z is convex. Let Z = CI(Z) be the topological closure of Z,
and notice that Z is a non-empty convex polytope. Let Y = {A(Q) : @ € F} be the set of
aggregate feasible random assignments. This set is a closed and convex polytope, and the
efficiency of @Q* implies that ZNY = &.

To use the full separation lemma, we need the following
Claim. ForanyycYNZ, § c R¥land e > 0,if y + 5 € Z then y — &0 ¢ Z.

Proof of the claim: If y+0 € Z then there is a QQ > Q* such that A (Q) = y+0. By way
of contradiction, assume y—ed € C1(Z). Thus, thereisa Q = (@i);e; such that u; () > ui(q;)
for every 1 € I and A <Q> = y — 6. Then, the random assignment Q = =@+ 1—i£@ is
feasible, and the choice of Q and Q and the linearity of utility w;(+) in probabilities imply
that Q = @Q*. But this contradicts the fact that Q* is ex-ante Pareto-efficient, proving the

claim.

This claim and the full separation lemma imply that there exists a price vector p € R‘fl
and a budget w € R such that p-z > w > p-y, forany z € Z and y € Y. Since Q* is feasible
Yicr @ €Y and thus p-> ., ¢f < w. Furthermore, p- >, , ¢; > w because Q* € Cl1(Z).
We conclude p- .., ¢i = w. Now, if we take some ¢; that some agent i € I strictly prefers to
q;, then g;+ 3, ;1 ¢j € Z, and we have p- <ql- + 2 jen qj) >w=np- <q§k + 2 jen i qj)
Consequently we have p-¢q; > p- ¢}, proving that p and * constitute an equilibrium for
budgets w] =p-q/. QED

In Appendix B, we provide an alternative proof of our main result that is based on

McLennan’s (2002) Separating Hyperplane Theorem.

4 Multiple-Unit Demand

Let us extend the results to the multiple-unit demand setting studied in Budish et al (2013).
As before we have a set of agents I and a set of objects X. As before, each object z € X

has a finite number of copies |z|. Each agent i is endowed with von Neumann-Morgenstern

! U|X|> € [0, +00)/¥I and with the set of consumption-feasible bundles,

39 Uy

valuations v; = (v

X, € RX. The utility from bundle ¢; = (q}, ...,in|) € X; is the scalar product g;v; the



utility from other bundles is zero. For simplicity, we focus on sets X; such that ¢; € X if the
total quantity consumed |g;| = ¢} +... —|—qu| is less than a quota || and the agent consumes at
most quantity 1 of each object.'®> The definitions of efficiency and pseudomarket equilibrium
translate word-for-word to this multiple-unit demand setting. Budish et al. (2013) showed
that any random assignment (g;),., that satisfies the above constraints can be implemented
as a lottery over deterministic assignments. They also proved the First Welfare Theorem for
the case of equal budgets.

The Second Welfare Theorem (Theorem 1) continues to hold true, and its proof follows

the same steps as in the single-unit demand case.

Theorem 2. (The Second Welfare Theorem with Multi-Unit Demands) If Q* € F
i1s ex-ante Pareto-efficient, then there is a vector of budgets w* € R'ﬂ and a vector of prices

p* e ]R'jrx‘ such that Q* and p* constitute a pseudomarket equilibrium with budgets w*.

5 Conclusion

We have established the second welfare theorem for the assignment problem without trans-
fers. Thus, in this setting every efficient assignment can be accomplished by a price mech-
anism. In addition to the substantive message, we developed a new approach to analyzing
markets in which agents’ preferences are only weakly convex and fail the non-satiation as-

sumption.

A Proof of The Full Separation Lemma

We say that X is fully separated from Y when p-x > w > p-y and we say that Z is separated
fromY when p-2>w >p-y.

The lemma is easy when n = 1. To prove the general case, we will proceed by induction
supposing that the lemma is true in dimensions lower than n > 2.

First notice that Y N Z is of dimension lower than n. Indeed, if Y N Z is of dimension n
then there would be an open ball B C Y N Z around point y* € Y N Z. Taking any z € Z
and setting 6 = z —y* we would find an ¢ > 0 and a point y —ed € B contrary to y —ed & Z.

13The single-unit demand setting is the special case of the multi-unit demand setting, in which |i| = 1 for
each agent 7. Furthermore, Theorems 1 and 2 remain true for any type of consumption constraints X; that
satisfies Budish et al’s hierarchy condition. Nguyen et al (2014) discuss the implementation problems with
general non-linear specifications, while Budish et al show how to use Milgrom’s (2009) integer assignment
messages to reduce certain non-linear preferences to the linear setting we study.



Since, Y N Z is of dimension lower than n, the separating hyperplane theorem implies
that there is a hyperplane H that separates Y and Z. If Z is disjoint with H or if Y is
disjoint with H then the lemma is true. Suppose thus that H NZ and HNY are non-empty.

Notice that Z' = ZNH,Y' =Y NH, and Z' = Z N H satisfy the assumptions of the
lemma in the linear space H. By the inductive assumption, there is an n — 2 dimensional
hyperplane H' C H fully separating Z’ from Y’ in H, and separating Z’ from Y’ in H.
Notice that H' splits H into two open half-spaces. Let HZ C H be the open half-space with
empty intersection with Y’ (and hence with Y) and HY C H be the open half-space with
empty intersection with Z’ (and hence with 7).

To conclude the proof, look at n — 1 dimensional hyperplanes that contain H’. Since
Z and Y are polytopes, at least one of these hyperplanes, say H? # H, also separates Z
and Y. Indeed, if none of them did then but H then either HY would need to have a non-
empty intersection with Z, or HZ would need to have a non-empty intersection with Y, a
contradiction.

Now, both H and H? separate the n-dimensional space into two open half-spaces. Let
H (Z ) be the half-space bounded by H and disjoint with Y, and define analogously H?> (Z ),
H (Y),and H? (Y). Now H (Z)NH?(Y) is disjoint with both Y and Z and (H(Y) N H*(Z))U
(H (Z) N H? (Y)) contain many hyperplanes. Take any such hyperplane H*. This hyper-
plane separates Z from Y and it fully separates Z from Y. QED'

B An Alternative Proof of the Second Welfare Theo-

rem

We provide an alternative proof of the Second Welfare Theorem based on McLennan’s (2002)
Separating Hyperplane Theorem. Let P be a polyhedron in R™.*® A proper face of P is an
intersection of P and a hyperplane H that splits R" into two half spaces HT and H~
where P C HT.' The affine hull of a set, denoted aff, is the collection of all finite linear
combinations of points in the set with weights adding up to 1 (with negative weights allowed,

as opposed to a convex hull). A face of P is a set that is either a proper face of P or P itself.

Lemma 2. (McLennan’s Separating Hyperplane Theorem) Suppose Y C R™ and
Z C R™ are polyhedra. Let Fy and Fy be the smallest faces of respectively Y and Z that

14An alternative proof of Lemma 1 can be based on McLennan (2002) Separating Hyperplane Theorem;
we would like to thank Andrew McLennan for making this point. McLennan’s theorem can also be used to
prove our main result; we provide such an alternative proof of our main result in Appendix B.

15 A polyhedron is the intersection of a finite number of half spaces defined by corresponding hyperplanes.

16 According to this definition, vertices and edges are also considered as proper faces. The empty set is
also a proper face of P as long as P # R™.
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contain Y N Z, and assume that aff(Fy U F;) # R"™. Then there is a hyperplane H that
separates R™ into two half spaces HY and H~ where Y C H~ and Z C H* such that
YNH=F and ZNH = Fy.

Alternative Proof of the Second Welfare Theorem. For any random assignment
Q € A, we define the aggregate assignment A (Q)) associated with @ to be >, ¢;. We write
Q = Q* when w;(q;) > u;(qf) for every i € I with at least one strict inequality. We write
Q = Q" when u;(q;) > w;(q}) for every i € I.

We can assume that no agent i obtains their most-preferred object. Indeed, suppose each
agent in set J C [ obtains his or her most preferred object, and that Q*|;_; and p* are an
equilibrium for some profile of budgets. Then, * and p* are an equilibrium for the same
budgets of agents in I — J and any sufficiently high budgets of agents in J.

Let Z ={A(Q): Q > Q*, Q € A}, and notice that the above assumption implies that Z
is non-empty and convex. Let Z = C1(Z) be the topological closure of Z, and notice that 7 is
a non-empty polyhedron in the n — 1 dimensional subspace S = {a € RI¥| ; Zfill a® = |I|}.
Let Y = {A(Q) : Q € F} be the set of aggregate feasible random assignments. This set is
also a polyhedron in the same subspace S. The efficiency of Q* implies that ZNY = &.
Let Fy and F be the smallest faces of respectively Y and Z that contain Y N Z. Defining
the relative interior (denoted ri) of a set as the interior of this set in the linear space defined
by the affine hull of this set, we conclude that the relative interiors of Y and Z have an
empty intersection. Thus, aff(Fy U F;) & S ¢ RI¥I. According to McLennan’s Separating
Hyperplane Theorem, there is a hyperplane H separating Y from Z and such that HNZ =
F. To prove the full separation of Z and Y, it is thus sufficient to show that Z N F; = &.

Claim. ZNF; =9

Proof of the claim: We omit simple cases in which F7; is either empty or a singleton.
In the latter case Fz = {A(Q*)} and it is clear that Z N F; = @. So we consider remaining
cases. By way of contradiction, let A (Q) € Z N F; where @ > Q™.

It must be the case that Y N Z has a nonempty intersection with the relative interior of
Fy, that is Y N1i(Fy) # @. Otherwise F; would not be the smallest face of Z containing
Y N Z because if the intersection of these two polyhedra has no points in the relative interior
of Fz, then this intersection must have all of its points in one face of F; that is not F'; itself.

Select any a € Y Nri(Fz). Since A(Q) € Fyz, for ¢ > 0 small enough, we have a —
e[A(Q) — a] € Fz. There exists Q > Q* such that A(Q) = a — €[A(Q) — a] because
Fy C Z=Cl(Z)={z:30Q € AJA(Q) = z,Q = Q*}). Let us define the random assignment
Q=-"0Q+ %Q Since A(Q) = a this assignment is feasible, Q € Y. The choice of @ and

1+e 1+

11



Q and the linearity of utility u;(+) in probabilities imply that Q = Q*. But this contradicts
the fact that QQ* is ex-ante Pareto-efficient, proving the claim. [J

This claim and McLennan’s Separating Hyperplane Theorem imply that there exists a
price vector p € RX! and a budget w € R such that p-z > w > p-y, for any z € Z and
y € Y. (For this we simply define H = {z € R": p-z = w}). Since both Z and Y contain
only vectors whose elements add up to the same number |/|, for any o > 0, 8 € R we have
that Hop = {z € R" : [ap + (B, ..., B)] - z = w} also fully separates Z from Y. Notice that
without loss of generality we can take p € R'fl and w € R,.

Since * is feasible ), ., ¢f € Y and thus p-) .., ¢i < w. Furthermore, p-> .., ¢/ > w
because A(Q*) € Cl1(Z). We conclude p -} .., q; = w. Now, if we take some ¢; that some
agent i € [ strictly prefers to g;, then ¢i+> ;.\ 1y ¢ € Z, and we have p- (qi + D jenii q;“) >
w=p- (q;‘ + Zjd\{i} qj*) Consequently we have p- ¢ > p - ¢/, proving that p and @Q*
constitute an equilibrium for budgets w; =p-¢'. QED
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