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Abstract

We show that in large markets all sensible, symmetric, and asymptotically

strategy-proof ordinal allocation mechanisms coincide asymptotically, and that

ordinal efficiency is obtained in the limit. The equivalence builds on a surprising

finite-market result: the ordinally-efficient and envy-free allocation is unique

and coincides with the outcome of Probabilistic Serial, provided the agents’

preference profile has full support. We also give an easy-to-verify condition for

asymptotic ordinal efficiency.
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1 Introduction

Efficiency and fairness are the twin goals in designing mechanisms to allocate ob-

jects. We study them in environments without monetary transfers; examples include

assigning school seats to students, and allocating university and public housing.1 In

these examples – and in our model – there are many agents relative to the number of

object types (also referred to as objects), each object type is represented by one or

more indivisible copies, and each agent consumes at most one object copy.2 Agents

are indifferent among copies of the same object, and have strict preferences among

objects. Because object copies are indivisible, fair allocation mechanisms allocate

objects randomly. We focus on mechanisms in which the random allocation depends

only on agents’ reports of their ordinal preferences over objects.3

The natural efficiency criterion is ordinal efficiency: an allocation is ordinally

efficient if no other allocation first-order stochastically dominates it for all agents.

The baseline fairness criterion is symmetric (or equal) treatment of equal agents: an

allocation is symmetric if any two agents who reported the same preference ranking

are allocated objects according to the same distribution. A more demanding fairness

criterion is envy-freeness (or, no envy): an allocation is envy-free if each agent first-

order stochastically prefers his distribution over objects to those of other agents.4

1See Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003) for the theory of school
seat assignment, and Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005b) and Abdulkadiroğlu,
Pathak, and Roth (2005a) for a discussion of practical consideration in seat assignment. See Ab-
dulkadiroğlu and Sönmez (1999) and Chen and Sönmez (2002) for a discussion of house allocation.

2In school seat assignment, the number of students is large relative to the number of schools; in
allocation of university housing, e.g. at Harvard, MIT, or UCLA, the set of rooms is partitioned into
a small number of categories, and rooms in the same category are treated as identical. A related
setting was studied by Che and Kojima (2010).

3In making this assumption, we follow the prior literature. The standard reasons the literature
focused on ordinal mechanisms are (i) learning and reporting one’s preference ordering is simpler
than learning and reporting one’s cardinal utilities, and (ii) ordinal preferences over sure outcomes
do not rely on agents’ attitude towards risk; we assume instead that an agent prefers one random
outcome over another if the former first-order stochastically dominates the latter.

4Ordinal efficiency have been introduced by Bogomolnaia and Moulin (2001), and analyzed
among others by Abdulkadiroğlu and Sönmez (2003) and McLennan (2002) (see also Postlewaite and
Schmeidler (1986) for an early exploration in voting). No envy was introduced by Foley (1967) and
Varian (1974), and its variants have been studied by, among others, Schmeidler and Vind (1972),
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We make several related contributions to the study of efficient and fair allocations.

First, we prove a surprising finite-market equivalence between ordinally efficient and

envy-free allocations and the celebrated Probabilistic Serial mechanism of Bogomol-

naia and Moulin (2001).5 We then use the ideas illustrated by this equivalence to

derive our main results that – taken together – imply that all asymptotically ordinally

efficient, symmetric, and asymptotically strategy-proof ordinal allocation mechanisms

that satisfy a mild continuity condition coincide asymptotically.6

One important message from these results is that if we care about asymptotic

strategy-proofness and treating agents symmetrically then – in large markets – we

cannot substantially improve upon the mechanisms we already know and use. In

particular, we establish asymptotic ordinal efficiency of a large class of mechanisms

– many of those used in practice – and show that the differences among the random

allocations generated by these mechanisms vanish in large markets. The allocational

equivalence is a strong argument in favor of choosing among these mechanisms pri-

marily on the basis of market-specific implementation considerations.7

and Alkan, Demange, and Gale (1991).
5Bogomolnaia and Moulin (2001) showed that Probabilistic Serial is ordinally efficient and envy-

free; the converse implication is new. The mechanism was earlier studied, in a restricted environment,
in Crès and Moulin (2001).

6A mechanism is strategy-proof if reporting preferences truthfully is a weakly dominant strategy.
A mechanism is asymptotically strategy-proof if it is approximately strategy-proof, and the approx-
imation error vanishes as the market becomes large; asymptotic ordinal efficiency and other asymp-
totic concepts are defined analogously. For the large literature on asymptotic strategy-proofness see
footnote 12. We are not aware of prior formal definition of asymptotic ordinal efficiency; Che and
Kojima (2010) talk informally about vanishing inefficiency.

7In particular, the asymptotic results lend support for the common use of the Random Priority
mechanism (Abdulkadiroğlu and Sönmez, 1998) as arguably the simplest and most transparent
among these mechanisms. To allocate objects, Random Priority first draws an ordering of agents
from a uniform distribution over orderings, and then allocates the first agent a copy of her most
preferred object, then allocates the second agent a copy of his most preferred object that still has
unallocated copies, etc. Asymptotic ordinal efficiency of Random Priority was established by Che
and Kojima (2010); their study left open the question – answered by us – whether there are other
asymptotically ordinally efficient and fair allocations preferable to Random Priority on grounds
other than efficiency and fairness. This conclusion is qualified by the finite-market result which may
be interpreted in favor of using Probabilistic Serial in environments in which agents’ report their
preferences truthfully, perhaps because of asymptotic strategy-proofness, or because the environment
contains enough object copies for Probabilistic Serial to be strategy-proof (see Kojima and Manea,
2010).
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For expositional purposes, let us first describe in detail the finite-market equiva-

lence of ordinal efficiency and envy-freeness with Probabilistic Serial. The mechanism

treats copies of an object as a pool of probability shares of the object. Given a pref-

erence profile, the random allocation is determined through an “eating” procedure in

which, as time passes from 0 to 1, each agent “eats” probability share of the best

acceptable object which is still available; an object is available at a point in time if

some of its shares have not been eaten before this point in time. We show that there

is a unique ordinally efficient and envy-free allocation and that it exactly coincides

with the allocation generated by Probabilistic Serial, if the set of reported preferences

satisfies a richness condition called “full support,” under which any strict ranking of

objects is represented by some agent’s preference ranking. While true in any finite

market, this characterization is particularly relevant when the market is large because

in this case full-support preference profiles are asymptotically generic; as the num-

ber of agents grows, and the number of object types stays bounded, the ratio of the

number of full-support profiles to all profiles goes to 1.8

This characterization is surprising because prior literature, starting with Bogo-

molnaia and Moulin (2001), constructed examples of preference profiles for which

there are ordinally efficient and envy-free allocations that differ from the outcome of

Probabilistic Serial. Our result implies that, in large markets, such profiles are very

rare. Nevertheless, because of their existence, the literature focused on characteriz-

ing ordinal efficiency and envy-freeness together with additional conditions – upper

invariance in Kesten, Kurino, and Ünver (2011), truncation robustness in Hashimoto

and Hirata (2011), and bounded invariance in Bogomolnaia and Heo (2011); these

papers show that Probabilistic Serial is the unique mechanism that satisfies ordinal
8The study of large markets for allocation of goods has a long tradition; the same or more

restrictive concept of large market is at the core of (Debreu and Scarf, 1963) replica economies,
Roberts and Postlewaite (1976) examination of incentives, Che and Kojima (2010) study of large
markets without transfers, and many others. We differ from this prior literature in that we impose
no assumptions on the number of object copies. Manea (2009) examines limits of this concept of
large market.
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efficiency, no envy, and one of the additional conditions.9 The remarkable feature

of our characterization is that we do not impose any additional conditions on the

mechanism beyond the standard assumptions of efficiency and envy-freeness.10

We prove three substantive large market results. The first says that in large

markets any two mechanisms that are asymptotically ordinally efficient and asymp-

totically envy-free are asymptotically equivalent for asymptotically generic preference

profiles; the equivalence obtains for all preference profiles if we additionally impose a

mild asymptotic continuity assumption on the two mechanisms.11

The second large-market result says that asymptotic envy-freeness is equivalent to

the conjunction of asymptotic symmetry and asymptotic strategy-proofness provided

each individual agent’s impact on other agents’ allocation vanishes as the market

becomes large. Asymptotic envy-freeness is thus nothing more than a conjunction of

the baseline fairness criterion and a standard incentive compatibility condition.12 In
9Kesten, Kurino, and Ünver (2011) also show that Probabilistic Serial is characterized by non-

wastefullness (a weak efficiency criterion), and an additional property they introduce, and Hashimoto
and Hirata (2011) also show that Probabilistic Serial is characterized by ordinal efficiency, and two
additional properties they introduce. An earlier elegant characterization of Probabilistic Serial was
proposed by Bogomolnaia and Moulin (2001) in the case of 3 agents and 3 objects; in this case
Probabilistic Serial is the unique mechanism which is ordinally efficient, envy-free, and satisfies an
additional incentive compatibility condition (weak strategy-proofness).

10A precursor of our characterization was obtained by Bogomolnaia and Moulin (2002); they
assume that all agents rank objects in the same way (agents may differ as to which objects are
better than receiving no object), and show that there is a unique envy-free and ordinal efficient
allocation, and that is achieved by Probabilistic Serial.

11Asymptotic envy-freeness is defined in Jackson and Kremer (2007); they also note that it is
related to incentive compatibility. Asymptotic continuity assumptions have a long tradition in the
studies of large markets, see Debreu and Scarf (1963); Aumann (1964); Hurwicz (1979), and Dubey,
Mas-Colell, and Shubik (1980).

12Asymptotic strategy-proofness is a weak incentive compatibility condition that has been in-
tensively studied since – building on a seminal analysis of asymptotic incentives by Roberts and
Postlewaite (1976) – Hammond (1979); Champsaur and Laroque (1982), and Jackson (1992) proved
it for the Walrasian mechanism in large exchange economies. See, for instance, Peleg (1979) (vot-
ing), and Gretsky, Ostroy, and Zame (1999) (assignment with transfers), and Roth and Peranson
(1999); Immorlica and Mahdian (2005); Kojima and Pathak (2008) (two-sided matching). Azevedo
and Budish (2011) review the literature on asymptotic strategy-proofness, and make a general case
in favor of imposing this requirement. Strategy-proof mechanisms are hard to manipulate, robust
to specification of agents’ beliefs, impose minimal costs of searching for and processing strategic
information, and do not discriminate among agents based on their access to information and ability
to strategize (c.f. Vickrey (1961); Dasgupta, Hammond, and Maskin (1979); Pathak and Sönmez
(2008); for some examples of a relaxation of this condition, see Ergin and Sönmez (2006) and Ab-
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particular, asymptotic strategy-proofness of asymptotically envy-free mechanisms is

reassuring because ordinal efficiency is a property of allocation with respect to the

reported preference profile, and only knowing that agents have vanishingly small in-

centives to misreport allows us to interpret ordinal efficiency with respect to reported

preferences as a welfare criterion.

The third large-market result is an easy-to-verify condition for asymptotic ordinal

efficiency. Under a mild asymptotic continuity condition, for a symmetric mechanism

to be asymptotically ordinally efficient it is enough that its random allocations can be

implemented as lotteries over Pareto-efficient deterministic allocations in such a way

that random allocations of agents with identical preferences are asymptotically un-

correlated.13 Many known mechanisms – including Random Priority (Abdulkadiroğlu

and Sönmez, 1998), and symmetric randomizations over Hierarchical Exchange of Pá-

pai (2000) and Trading Cycle mechanisms of Pycia and Ünver (2009) (extended to the

setting with copies by Pycia and Ünver, 2011) – satisfy the implementation condition,

and, if the number of object copies grows unboundedly as the economy becomes large,

they also satisfy the asymptotic continuity condition. We can conclude that all these

mechanisms are asymptotically ordinally efficient. They are also strategy-proof, and

thus they coincide asymptotically with each other, and with Probabilistic Serial.14

The closest forerunner of our paper is Che and Kojima (2010). They showed that

Random Priority and Probabilistic Serial are asymptotically equivalent, and both

are asymptotically ordinally efficient, symmetric, and asymptotically strategy-proof.

Our general results allow us to relax their assumptions on the growth rate of the

dulkadiroğlu, Che, and Yasuda (2009)).
13Even when the continuity condition fails, the asymptotic ordinal efficiency obtains for asymp-

totically generic preference profiles.
14Abdulkadiroğlu and Sönmez (1998) proved that Random Priority and the Core from Random

Endowments (a uniform randomization over Gale’s Top Trading Cycles, Shapley and Shubik, 1972)
are equivalent in environments in which each object has a single copy, and Pathak and Sethuraman
(2010) showed that uniform randomization over Abdulkadiroğlu and Sönmez (2003) Top Trading
Cycles for School Choice coincides with Random Priority in environments with copies. The above
corollary of our main result provides a large market counterpart of this surprising equivalence for
any symmetric randomization (not only uniform) over the substantially larger classes of Hierarchical
Exchange and Trading Cycles mechanisms.
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number of copies, and thus gain new insights into asymptotic ordinal efficiency of

Random Priority and asymptotic strategy-proofness of Probabilistic Serial.15 More

importantly, we show that the equivalence they discovered is not a coincidence but

rather a fundamental property of allocation in large markets: in large markets there is

effectively only one ordinal allocation mechanism that satisfies the standard postulates

of efficiency, fairness, and incentive compatibility.

2 Model

A finite economy consists of a finite set of agents N , a finite set of object types Θ

(or simply objects), and a finite set of object copies O. Each copy o ∈ O has a

uniquely determined type θ (o) ∈ Θ. To avoid trivialities, we assume that each object

is represented by at least one copy. Agents have unit demands and strict preferences

over objects from Θ. Agent’s preference ranking is also referred to as the type of the

agent. Agents’ preferences over objects define their preferences over copies of objects:

agent i prefers object copy o over object copy o� iff she prefers θ (o) over θ (o�), and the

agent is indifferent between two object copies if they are of the same type. We can

thus interchangeably talk about preferences over object types and preferences over

object copies, or simply about preferences over objects. The indifference also implies

that we can interchangeably talk about allocating objects and allocating copies of

objects. One natural interpretation is that object types represent schools, and object

copies represent seats in these schools. We refer to the set of preference rankings (an

agent’s types) as P and to the set of preference profiles as PN .

We assume that Θ contains the null object � (“outside option”), and we assume

that it is not scarce, |θ−1 (�)| ≥ |N |. An object is called acceptable if it is preferred

to �.
15Kojima and Manea (2010) show that agents’ have incentives to report preferences truthfully

in Probabilistic Serial if the number of copies is large enough relative to a measure of variabil-
ity of agents’ utility; Che and Kojima (2010) and our results on asymptotic strategy-proofness of
Probabilistic Serial does not rely on assumptions on agents’ utility.
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A random allocation µ is determined by probabilities µ (i, a) ∈ [0, 1] that agent i

is assigned object type a.16 All random allocations studied in this paper are assumed

to be feasible in the following sense

�

i∈N

µ (i, a) ≤
��θ−1 (a)

�� for every a ∈ Θ,

�

a∈Θ

µ (i, a) = 1 for every i ∈ N.

The set of these random allocations is denoted by M. A random mechanism φ :

PN →M is a mapping from the set of profiles of preferences over objects that agents

report to the set of random allocations.

3 A Characterization of Ordinal Efficiency and Envy-

Freeness

In this section we simultaneously characterize the celebrated Probabilistic Serial

mechanism of Bogomolnaia and Moulin (2001), and two natural properties of allo-

cations: ordinal efficiency and envy-freeness. Given preference profile �N , a random

allocation µ ordinally dominates another random allocation µ� if for every agent i the

distribution µ (i, ·) first order stochastically dominates µ� (i, ·), that is

�

b�ia

µ (i, b) ≥
�

b�ia

µ
� (i, b) , ∀a ∈ Θ.

A random allocation is ordinally efficient with respect to a preference profile �N if

it is not ordinally dominated by any other allocation. Ordinal efficiency is a weak
16A random allocation needs to be implemented as a lottery over deterministic allocations; a

deterministic allocation is a one-to-one mapping from agents to copies of objects from O. Hylland
and Zeckhauser (1979) and Bogomolnaia and Moulin (2001) showed how to implement random
allocations. The implementation relies on the Birkhoff and von Neumann’s theorem. For recent
work on decomposition of random allocations, see Budish, Che, Kojima, and Milgrom (2011).
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and natural efficiency requirement: if an allocation is not ordinarily efficient, then

all agents would ex ante agree there is a better one. P Bogomolnaia and Moulin

(2001) discuss this requirement in depth. Given preference profile �N , an allocation

µ is envy-free if any agent i first-order stochastically prefers his allocation over the

allocation of any other agent j, that is

�

b�ia

µ (i, b) ≥
�

b�ia

µ (j, b) , ∀a ∈ Θ.

Envy-freeness (referred to also as no envy) is a strong fairness requirement introduced

by Foley (1967). Footnote 4 gives more historic details on the two concepts.

3.1 Probabilistic Serial

Probabilistic Serial treats copies of an object type as a pool of probability shares of

the object type. Given preference profile �N , the random allocation produced by

Probabilistic Serial can be determined through an “eating” procedure in which each

agent “eats” probability share of the best acceptable and available object with speed

1 at every time t ∈ [0, 1]; an object a is available at time t if its initial endowment

θ−1 (a) is larger than the sum of shares that have been eaten by time t.

Formally, at time t = 0, the total quantity of available shares of object type a ∈ Θ

is Qa (0) = |θ−1 (a)|, and for times t ∈ [0, 1) we define the set of available objects

A (t) ⊆ Θ and the available quantity Qa (t) of probability shares of object a ∈ Θ

through the following system of integral equations

A (t) = {a ∈ Θ|Qa (t) > 0} ,

Qa (t) = Qa (0) −
ˆ t

0

|{i ∈ N | a ∈ A (τ) and ∀b ∈ A (τ) a �i b}| dτ.

We say that agent i eats from object a at time t iff a ∈ A (t) and ∀b ∈ A (t) a �i b.

If stopped at time t, the eating procedure allocates object a ∈ Θ to agent i ∈ N with

9



probability

ψ
t (i, a) =

ˆ t

0

χ (i eats from a at time τ) dτ,

where the Boolean function χ (statement) takes value 1 if the statement is true and

0 otherwise. The allocation ψ (i, a) of Probabilistic Serial is given by the eating

procedure stopped at time 1; that is ψ = ψ1.

The continuity of the functions Qa implies that for any time T ∈ [0, 1) and any

η > 0 sufficiently small, any agent i eats the same object for all t ∈ [T, T + η).

In the eating procedure there are some critical times when one or more objects get

exhausted. At this time some of the available quantity functions Qa have kinks; at

other times their slope is constant.17

3.2 Main Finite-Market Result

Our goal is to show that ordinal efficiency and envy-freeness fully characterize the

allocation of Probabilistic Serial. To do so we restrict attention to preference profiles

with full support. A preference profile has full support if for each ranking of objects,

there exists an agent whose preferences over objects agree with this ranking.18 The

restriction to full-support preference profiles is strong in small markets, however as

the market becomes large the restriction becomes mild: as the number of agents grow

while the number of object types stays constant, the proportion of the number of

full-support profiles to the number of all preference profiles goes to 1.

Theorem 1. For every full-support preference profile, an allocation is ordinally effi-

cient and envy-free if and only if it is generated by Probabilistic Serial.

Ordinal-efficiency and envy-freeness of Probabilistic Serial were proved by Bo-

gomolnaia and Moulin (2001). The converse implication is new and relies on the
17This structure of quantity functions Qa implies that we can define the allocation of Probabilistic

Serial through a system of difference equations; such definitions are given in Bogomolnaia and Moulin
(2001), and, for the environment with copies, in Kojima and Manea (2010).

18For our results, it is enough to assume for each ranking of objects such that all objects are
acceptable, there exists an agent whose preferences over objects agrees with this ranking.
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preference profile having full support; there are non-full-support preference profiles

for which the converse implication fails — see Bogomolnaia and Moulin (2001) (c.f.

also Example 2 from Kesten, Kurino, and Ünver (2011)).

Proof. Fix any full-support preference profile and random allocation µ that is envy-

free and ordinally efficient. To prove the theorem it is enough to show that

�

a��ia

µ (i, a�) ≥
�

a��ia

ψ
t (i, a�) (1)

for all t ∈ [0, 1], agents i ∈ N , and objects a ∈ Θ. Indeed, this set of inequalities for

t = 1, together with ordinal efficiency of Probabilistic Serial ψ1 imply that µ (i, a) =

ψ1 (i, a) for all i ∈ N, a ∈ Θ.

By way of contradiction, assume the above inequality fails for some time, agent,

and object. Let T be the infimum of t ∈ [0, 1] such that there exist i ∈ N and b ∈ Θ

such that
�

a�ib
µ (i, a) <

�
a�ib

ψt (i, a). Since there are finite number of agents and

objects, there is an agent and object for which the infimum is realized; let us fix

such an agent and such an object, and call them i and b, respectively. Let us assume

that, among objects for which the infimum is realized, b is the highest ranked in i’s

preferences .

We proceed in several steps.

Step 1. Inequalities (1) are satisfied for all t ∈ [0, T ]. In particular, the cutoff time

T belongs to [0, 1). Indeed, by definition, inequalities (1) are satisfied for all t ∈ [0, T ).

Because the inequalities are satisfied when t = 0, and the mapping t �→ ψt (i, a) is

continuous, inequalities (1) are also satisfied for t = T.

Step 2. In the eating procedure, agent i must be eating from b at time T . Indeed,

if i is eating from an object a �i b at T , then ψT (a�) = 0 for all objects a� ≺i a,

and hence if (1) is violated for agent i and object b then it is violated for agent i and

object a. This would contradict the assumption i ranks b above all other objects for

which the infimum T is realized. If i is eating from an object a ≺i b at time T then
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�
a��ia

µ (i, a�) ≥
�

a��ib
ψT (i, a�) =

�
a��ib

ψt (i, a�) for t just above T , again contrary

to T being the infimum of t at which (1) is violated for i and b.

Step 3. Agent i gets object b or better with probability T , that is
�

a��ib
µ (i, a�) =

T . Indeed, by Step 2, agent i is eating from b at time T in the eating procedure, and

thus
�

a��ib
ψT (i, a�) = T . Because (1) is satisfied for t = T , we get

�
a��ib

µ (i, a�) ≥
�

a��ib
ψT (i, a�) = T . The inequality is binding because t �→ ψt (i, a�) are continuous

in t and T is the infimum of times at which (1) is violated.

Step 4. If b is the favorite object of an agent j ∈ N , then µ (j, b) = T . Indeed,

by Step 1, the top choice object b is still available at time t, and thus ψT (j, b) = T .

Because (1) is satisfied at time T we thus get µ (j, b) ≥ T . Furthermore, envy-freeness

of µ implies that µ (j, b) ≤ T as otherwise agent i outcome would not �i-first-order

stochastically dominate that of j.

Step 5. If b is the favorite object of an agent j ∈ N , then ψ1 (j, b) > T . Indeed, if

not, then in the eating procedure b would be exhausted at time T contrary to i eating

out of b at time T and thus at some times t > T .

Step 6. There is an agent k ∈ N such that µ (k, b) > ψ1 (k, b). Indeed, by the

full-support assumption there is an agent j ∈ N who ranks b as his first choice. Steps

3 and 4 imply that this agent j gets less b under µ than under ψ. Ordinal efficiency

of µ implies that there must be another agent k who gets more b under µ than under

ψ1.

Step 7. There is an object c �= b that agent k from Step 6 ranks just above b.

Indeed, the claim follows from Steps 4, 5, and 6.

Let us fix agent k and object c satisfying Steps 6 and 7.

Step 8. Under µ, agent k gets object b or better with probability strictly higher

than T . Indeed, Step 1 and the availability of object b at time T in the eating

procedure imply that
�

a�kc µ (k, a) ≥
�

a�kc ψT (k, a) = T−ψT (k, b) ≥ T−ψ1 (k, b).

The claim then follows from Step 6.

To conclude the proof, notice that by the full support assumption, there exist an
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agent j who ranks objects the same way as k except that he puts b first. By Step 6,

µ (k, b) > 0, and thus ordinal efficiency of µ implies that µ (j, a) = 0 for all objects

a �k b. Step 4 thus implies that under µ the probability j gets object c or better

equals T , and, by Step 8, it is smaller than the probability k gets these objects. This

contradicts envy-freeness of µ. The contradiction proves (1), and the theorem.

The analogue of Theorem 1 holds true in environment in which all objects are

acceptable. The above argument is valid in such environment because in the argument

b is a proper object.

4 Allocations in Large Markets

The characterization of efficient and fair allocations given by Theorem 1 holds true in

any finite market, including large markets. Ordinal efficiency is a natural requirement,

and envy-freeness is an attractive property of allocations; however these requirements

are very strong – there are many sensible allocation mechanisms that do not satisfy

them. The goal of this section is to show that much weaker requirements – asymp-

totic ordinal efficiency and asymptotic envy-freeness – are sufficient to determine the

allocation as the market becomes large.

To achieve this goal let us fix a sequence of finite economies �Nq, Θ, Oq�q=1,2,... in

which the set of object types, Θ, is fixed while the set of agents Nq grows in q; we

will assume throughout that |Nq|→∞ as q →∞. As discussed in the introduction,

similar or more restrictive assumptions are standard in the study of large markets.

To avoid repetition, in the sequel we refer to �Nq, Θ, Oq� as the q-economy, and

maintain a notational assumption that allocations µq and mechanisms φq are defined

on q-economies. The q-economy function mapping object copies to their types is

denoted θq. The set of random allocations in the q-economy is denoted Mq.

Notice that we do not impose any assumptions on the sequence of sets of ob-

ject copies, Oq, except for some remarks where we explicitly impose the additional
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assumption that
��θ−1

q (a)
�� → ∞. Our main results apply equally well regardless of

whether the number of object copies stays bounded, or whether it grows slower than,

faster than, or at the same rate as the number of agents in the economy. In particu-

lar, replica economies in which the number of agents and the number of object copies

grow at the same rate are a special case of our setting, as is the environment studied

by Che and Kojima (2010) who assume that the ratio
��θ−1

q (a)
�� / |Nq| converges to a

positive limit for all non-null objects a ∈ Θ.

4.1 Asymptotic Ordinal Efficiency

There are mechanisms, such as Random Priority (Abdulkadiroğlu and Sönmez, 1998),

that are not ordinally efficient, but which in large markets — and under some ad-

ditional assumptions — have only small inefficiencies as demonstrated by Che and

Kojima (2010). To formally capture the efficiency properties of such mechanisms, we

now introduce a concept of asymptotic ordinal efficiency.

Let us first define an auxiliary concept of �-ordinal efficiency. Given an � > 0, we

say that a random allocation µ is �-ordinally efficient with respect to a preference

profile � iff (i) no agent is allocated a higher-than-� probability of an unacceptable

object, (ii) if object a is unallocated with probability higher than � and µ (i, b) > �,

then b �i a, and (iii) there is no cycle of agents i0, i1, ..., in and objects a0, a1, ..., an

such that µ (ik, ak) > � and ak+1 �ik ak (all subscripts modulo n + 1).

Given a sequence of preference profiles �Nq , a sequence of allocations µq is asymp-

totically ordinally efficient if for each q = 1, 2, ... there is � (q) > 0 such that � (q) → 0

when q →∞ and µq is � (q)-ordinally efficient with respect to �Nq . We say that the

asymptotic ordinal efficiency obtains uniformly on a class of sequences of allocations

if � (q) → 0 uniformly on this class.

This definition of asymptotic ordinal efficiency is motivated by the following re-

sult from Che and Kojima (2010) (see also Bogomolnaia and Moulin (2001)) — an

allocation µ is ordinally efficient iff the following exact analogues of conditions (i)-(iii)
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hold true: (i’) no agent is allocated a positive probability of an unacceptable object,

(ii’) if object a is unallocated with positive probability and µ (i, b) > 0, then b �i a,

and (iii’) there is no cycle of agents i0, i1, ..., in and objects a0, a1, ..., an such that

µ (ik, ak) > 0 and ak+1 �ik ak.19 In particular, their result implies that any sequence

of ordinally efficient allocations is asymptotically ordinally efficient.

4.2 Asymptotic Envy-Freeness

To formulate our main result on allocations in large market, we need to relax envy-

freeness to asymptotic envy-freeness. Fix a sequence of preference profiles �Nq . A

sequence of random allocations µq is asymptotically envy-free if

lim inf
q

min
i,j∈Nq ,a∈Θ




�

b�ia

µq (i, b)−
�

b�ia

µq (j, b)



 ≥ 0.

We say that the asymptotic envy-freeness of allocations obtains uniformly on a class

of sequences of allocations if the lim inf convergence obtains uniformly on this class.

Of course, any sequence of envy-free allocations is asymptotically envy-free.20

4.3 Asymptotic Full Support

We derive our first asymptotic results for sequences of preference profiles that have

full support in the limit; in Section 5 we relax this assumption.21 Formally, we say

that a sequence of preference-profiles �Nq has asymptotically full support if there
19Condition (i’) is known as individual rationality, and condition (ii’) as non-wastefullness. Ana-

logues of all of our results remain true if we strengthen the concept of asymptotic ordinal efficiency
by substituting the more demanding conditions (i’) and (ii’) for conditions (i) and (ii). No change
in the results and proofs is needed, except for Theorem 4 when we need to impose some additional
assumption such as ex post Pareto efficiency (defined in Section 6), or directly conditions (i’) and
(ii’). All mechanisms we explicitly discuss in this paper, including those listed in Remark 3, satisfy
conditions (i’) and (ii’).

20Asymptotic envy-freeness was studied by Jackson and Kremer (2007).
21The restriction to asymptotic full-support preference profiles is not needed if the allocations are

generated by mechanisms satisfying a mild asymptotic continuity assumption.
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exists δ > 0 and q̄ such that for any q > q̄, and for any ranking of objects �∈ P, the

proportion of agents whose �Nq -ranking agrees with � is above δ. Asymptotic full

support holds true uniformly on a class of preference profiles if they have asymptotic

full support with the same δ and q̄.

Asymptotic full support means that, as q grows, any preference ranking is rep-

resented by a non-vanishing fraction of agents.22 Because a full-support profile can

have a single agent of any given type, there are sequences of full-support profiles

which are not asymptotically full-support. However, full-support sequences of prefer-

ence profiles are asymptotically generic; we formally define asymptotic genericity and

show that asymptotically full-support preference profiles are asymptotically generic

in Appendix B.

4.4 Main Result on Allocations in Large Markets

The above concepts allow us to state our main result on allocations in large markets:

Theorem 2. Fix a sequence of preference profiles �Nq with asymptotically full-support.

If two sequences of allocations µq and µ�q are each asymptotically ordinally efficient

and asymptotically envy-free then they asymptotically coincide, that is,

max
i∈Nq ,a∈Θ

��µq (i, a)− µ
�
q (i, a)

�� → 0 as q →∞.

In the sequel we rely on a slightly stronger version of this result:

Theorem 2. (Uniform Version) If a class Q of preference profile sequences has

uniformly asymptotic full support, and two classes of allocation sequences

�
φq

�
�Nq

�
|
�
�Nq

�
q=1,2,...

∈ Q
�

and

�
φ
�
q

�
�Nq

�
|
�
�Nq

�
q=1,2,...

∈ Q
�

,

22In a continuum economy, the counterpart of asymptotic full support says that every ordering is
represented with positive probability; in other words the distribution of orderings has full support.
Our results on asymptotically full-support profiles remain valid if the assumption of non-vanishing
representation is imposed only for ranking of objects � in which all non-null objects are acceptable.
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are each uniformly asymptotic ordinally efficient and asymptotic envy-free, then the

asymptotic convergence of the allocation sequences is uniform, that is,

max
(�Nq)q=1,2,...

∈Q, i∈Nq , a∈Θ

��φq

�
�Nq

�
(i, a)− φ

�
q

�
�Nq

�
(i, a)

�� → 0 as q →∞.

The proof starts with the observation that it is enough to show that µq asymptoti-

cally coincides with the allocation of Probabilistic Serial. The rest of the proof follows

roughly the same outline as the proof of Theorem 1, except that substantive addi-

tional care must be taken to handle the approximations. The proof is in Appendix

A.

Using a mild asymptotic continuity assumption, in Section 5 we relax the restric-

tion to asymptotically full-support preference profiles. Note also that an analogue of

Theorem 2 holds true in environments in which all objects are acceptable.

5 Allocation Mechanisms in Large Markets

In this section we move beyond studying allocations for single preference profiles

(and subsets of profiles), and study mechanisms φq : PNq → Mq. We first show

that asymptotic envy-freeness is a mild requirement, and then derive analogues of

our results for all preference profiles, rather than only asymptotically full-support

profiles.

5.1 Symmetric and Asymptotically Strategy-Proof Mechanisms

How strong an assumption is asymptotic envy-freeness? It is surprisingly mild — it

is implied by two standard postulates: symmetry and asymptotic strategy-proofness.

Symmetry is a basic fairness property of an allocation, and is also known as equal

treatment of equals. Given preference profile �N , a random allocation µ is symmetric

if any two agents i and j who submitted the same ranking of objects, �i=�j, are
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allocated the same distributions over objects, µ (i, ·) = µ (j, ·). Our results will in fact

rely only on a weak form of this assumption: given a sequence of preference profiles

�Nq , a sequence of random allocations µq is asymptotically symmetric if

max
i,j∈Nq such that�i=�j , a∈Θ

|µq (i, a)− µq (j, a)|→ 0 as q →∞.

Asymptotic symmetry obtains uniformly on a class of sequences of allocations if

the convergence is uniform on this class. Of course, every sequence of symmetric

allocations is asymptotically symmetric.

Before defining asymptotic strategy-proofness, let us review the standard defi-

nition of strategy-proofness of random ordinal mechanism (cf. Gibbard 1977). A

random mechanism φ is strategy-proof if for any agent i ∈ N and any profile of

preferences �N−{i} submitted by other agents, the allocation agent i obtains by re-

porting the truth, φ
�
�i,�N−{i}

�
(i, ·), first-order stochastically dominates allocation

the agent can get by reporting anther preference ranking ��i, that is

�

b�ia

φ
�
�i,�N−{i}

�
(i, b) ≥

�

b�ia

φ
�
��i,�N−{i}

�
(i, b) , ∀a ∈ Θ.

A sequence of random mechanisms φq is asymptotically strategy-proof on a sequence

of preference profiles �Nq if

lim inf
q

min
i∈Nq ,��

i∈P, a∈Θ




�

b�ia

φq

�
�Nq

�
(i, b)−

�

b�ia

φq

�
��i,�Nq−{i}

�
(i, b)



 ≥ 0.

We say that asymptotic strategy-proofness obtains uniformly on a class of sequences

of preference profiles if the lim inf convergence obtains uniformly on this class. A

sequence of mechanisms is asymptotically strategy-proof if the convergence obtains

uniformly on the class of all sequences of preference profiles. Footnote 12 discusses

the literature on asymptotic strategy-proofness.
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To show that asymptotic envy-freeness is implied by symmetry and asymptotic

strategy-proofness, we restrict attention to mechanism satisfying a regularity condi-

tion known as asymptotic non-atomicity. A sequence of random mechanisms φq :

Nq →Mq is asymptotically non-atomic on a sequence of preference profiles �Nq if

max
i,j∈Nq , i�=j,��

i∈P, a∈Θ

��φq

�
�i,�Nq−{i}

�
(j, a)− φq

�
��i,�Nq−{i}

�
(j, a)

�� → 0 as q →∞.

We say that asymptotic non-atomicity obtains uniformly on a class of sequences of

preference profiles if the convergence obtains uniformly on this class. A sequence of

mechanisms is asymptotically non-atomic if the convergence obtains uniformly on the

class of all sequences of preference profiles.

In words, a sequence of random mechanisms is asymptotically non-atomic if the

impact on allocations of other agents from a preference change by one agent vanishes

as the economy grows. Asymptotic non-atomicity is a natural regularity condition

– as markets grow we expect individuals’ impact on allocations of other agents to

become arbitrarily small; see Debreu and Scarf (1963) and Aumann (1964).

Remark 1. Asymptotic non-atomicity of Probabilistic Serial is straightforward. Ran-

dom Priority is asymptotically non-atomic for asymptotically full-support preference

profiles. To allocate objects, Random Priority first draws an ordering of agents from

a uniform distribution over orderings, and then allocates the first agent a copy of her

most preferred object, then allocates the second agent a copy of his most preferred

object that still has unallocated copies, etc. (see Abdulkadiroğlu and Sönmez, 1998).

To see that Random Priority is asymptotically non-atomic for asymptotically full-

support preference profiles note that (i) a change of preferences by agent i from �i to

��i can change the allocation of another agent j only in Random Priority orderings in

which agent j takes the last copy of an object under at least one of the two preference

rankings submitted by i; (ii) the probability of agent j taking the last copy of an

object a under a preference profile is bounded above by 1
n where n is the number of
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agents with preference rankings identical to j’s, and hence the probability of agent

j taking the last copy of an object under one of two profiles is bounded above by
2|Θ|
n−1 , and (iii) this probability converges to 0 along any sequence of asymptotically

full-support preference profiles because along such sequences n →∞. A similar argu-

ment shows that uniform randomizations over Hierarchical Exchange of Pápai (2000)

or Trading Cycles of Pycia and Ünver (2009) (extended to the setting with object

copies by Pycia and Ünver (2011)) are asymptotically non-atomic for asymptotically

full-support preference profiles.

It is straightforward to observe that in large asymptotically non-atomic markets,

symmetry and strategy-proofness are equivalent to asymptotic envy-freeness.23

Theorem 3. For any asymptotically non-atomic sequence of random mechanisms φq,

the mechanisms are asymptotically symmetric and asymptotically strategy-proof if and

only if they are asymptotically envy-free.

This result and the above discussion allow us to conclude that asymptotic envy-

freeness is a mild assumption. Theorems 2 and 3 furthermore imply

Corollary 1. Suppose that two sequences of random mechanisms φq and φ�q are each

(i) asymptotically non-atomic, (ii) asymptotically ordinally efficient, and (iii) either

asymptotically envy-free, or asymptotically symmetric and asymptotically strategy-

proof. If a sequence of preference profiles �Nq has asymptotically full-support, then

the sequences of allocations φq

�
�Nq

�
and φ�q

�
�Nq

�
asymptotically coincide, that is

max
i∈Nq ,a∈Θ

��φq

�
�Nq

�
(i, a)− φ

�
q

�
�Nq

�
(i, a)

�� → 0 as q →∞.

We will later see that – in addition to Probabilistic Serial – Random Priority, and

many other mechanisms satisfy the conditions of this equivalence result.
23We apply the efficiency and no envy terms directly to mechanisms: a sequence of mechanisms

is asymptotically ordinally efficient if the mechanisms generate asymptotically ordinally efficient
allocations for every sequence of preference profiles; similarly, a sequence of mechanisms is asymp-
totically envy-free if the mechanisms generate asymptotically envy-free allocations for every sequence
of preference profiles.
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Analogues of the above two results are true when formulated uniformly on any

class of sequences of preference profiles �Nq , and resulting sequences of allocations

φq

�
�Nq

�
.

5.2 Main Results on Allocation Mechanisms in Large Markets

Results of Section 4 are derived for asymptotically full-support sequences of preference

profiles. The analogues of these results are true for all preference profiles if we impose

mild continuity assumptions on the mechanisms.

A sequence of mechanisms φq is asymptotically equicontinuous if for every � > 0,

and every q large enough, there is δ > 0 such that for every agent j ∈ Nq the inequality

max
a∈Θ

���φq

�
�Nq

�
(j, a)− φq

�
��Nq

�
(j, a)

��� < �, (2)

is satisfied for all �Nq ,��Nq
∈ PNq such that ��j=�j and

|{i ∈ Nq| ��i �=�i}|
|Nq|

< δ. (3)

Asymptotic equicontinuity is stronger than asymptotic non-atomicity. It is an

asymptotic and ordinal counterpart of the uniform equicontinuity of Kalai (2004).24

Continuity of large market allocation has been studied by Hurwicz (1979) and Dubey,

Mas-Colell, and Shubik (1980). Champsaur and Laroque (1982) directly address the

need for such an assumption.

Remark 2. Asymptotic equicontinuity of Probabilistic Serial is straightforward to

demonstrate. Random Priority is asymptotically equicontinuous provided

��θ−1
q (a)

�� →∞ as q →∞. (4)

24Kalai imposes the continuity assumption uniformly on all games (mechanisms) rather than only
in an asymptotic limit, and he requires agents’ utilities rather than their allocations to be �-close.
This assumption is at the core of his analysis of a general class of large market games.
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The proof relies on the definition of Random Priority provided in Remark 1, and has

three steps.

Step 1. A change of preferences by a fraction δ of agents can change the (deter-

ministic) allocation of another agent j only in Random Priority orderings in which

agent j takes the last copy of an object under at least one of the two preferences

rankings submitted by the fraction of agents changing their preferences.

Step 2. The probability an agent takes the last copy of an object a under a

preference profile vanishes as q → ∞. Indeed, fix q and an ordering of agents other

than j ∈ Nq; and consider probabilities conditional on such an ordering. If a is the

favorite object for j then j would take it as long as it is available and the conditional

probability j takes the last copy of a is bounded above by
��θ−1

q (a)
��. If there are objects

(“better objects”) that agent j prefers over a then consider three cases. If one of the

better objects is still available when the last copy of a goes, then the probability

j takes the last copy of a is 0. If the better objects are exhausted by some agent

with order number t in the sequence, then if object a is still available when order

number t +
����θ−1

q (a)
��
�

comes up, then the probability j takes the last copy of a is

bounded above by 1q
|θ−1

q (a)|
; if a is not available when order number t+

����θ−1
q (a)

��
�

comes up, then the probability j takes the last copy of a is bounded above by 1
t and

t ≥
��θ−1

q (a)
�� −

����θ−1
q (a)

��
�
. In either case, the conditional probability of j taking

the last object is bounded above by max

�
1q

|θ−1
q (a)|

,
1

|θ−1
q (a)|−

q
|θ−1

q (a)|
,

�
, and so does

the unconditional probability.

Step 3. By Step 2, the probability agent j takes the last copy of an object under

one of two profiles of Step 1 is bounded above by

2 |Θ|max





1���θ−1

q (a)
��
,

1
��θ−1

q (a)
��−

���θ−1
q (a)

��
,




 .

By condition (4), this bound goes to zero uniformly over agents and preference profiles,
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and the claim is true.

An analogous argument can show that mechanisms obtained by uniform random-

ization over Hierarchical Exchange or Trading Cycles are asymptotically equicontin-

uous provided the number of object copies satisfies condition (4).

Imposing asymptotic equicontinuity allows us to extend the claim of Theorem 2

to all sequences of preference profiles.

Imposing the asymptotic equicontinuity assumption allows us to derive our main

equivalence results for allocation mechanisms in large markets.25

Corollary 2. Suppose that the sequences of random mechanisms φq and φ�q are (i)

asymptotically equicontinuous, (ii) asymptotically ordinally efficient, and (iii) either

asymptotically envy-free, or asymptotically symmetric and asymptotically strategy-

proof. Then, the sequences of mechanisms coincide asymptotically and uniformly

across all preference profiles, that is

max
�Nq∈Pq ,i∈Nq ,a∈Θ

��φq

�
�Nq

�
(i, a)− φ

�
q

�
�Nq

�
(i, a)

�� → 0 as q →∞.

Proof. First notice that Theorem 2 (Uniform Version) provides a uniform convergence

for all sequences of preference profiles�Nq such that for some δ > 0 and positive in-

teger q̄, for all q > q̄ each ranking �∈ P is represented in �Nq by at least fraction

δ of agents. A uniform counterpart of Theorem 3 is also true for such sequences of

profiles. Because every asymptotically equicontinuous mechanism is asymptotically

non-atomic, Theorems 2 and 3 yield the result for asymptotically full-support prefer-

ence profiles. We can then fix any sequence of profiles �Nq , and use the convergence

for asymptotically full-support sequences of profiles ��Nq
such that (3) is satisfied, and

the asymptotic equicontinuity of φq, to derive the convergence for �Nq .

To be able to apply this equivalence result we need to know which mechanisms
25An analogue of this corollary, with the same proof, holds true holds true uniformly on any class

of sequences of preference profiles, Qq ⊆ PNq . We may then relax the equicontinuity assumption by
restricting it to �Nq∈ Qq (rather than all �Nq∈ PNq ).
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– other than Probabilistic Serial – are asymptotically ordinally efficient. We explore

this question in the next section.

6 Ex-Post Pareto Efficiency And Asymptotic Ordi-

nal Efficiency

Which mechanisms are asymptotically ordinally efficient, besides Probabilistic Serial?

Che and Kojima (2010) demonstrate ordinal efficiency of Random Priority in the case

in which the number of copies of each object grows at asymptotically the same rate

as the number of agents, and offer a counterexample to asymptotic ordinal efficiency

in settings with few copies. How far can we relax the rate of growth restriction?

What can be said about asymptotic ordinal efficiency of symmetric randomizations

over Hierarchical Exchange or over Trading Cycles?

To address these questions, let us say that a sequence of allocations can be imple-

mented in a Pareto-efficient and asymptotically-uncorrelated way if the allocations

can be implemented as lotteries over Pareto-efficient deterministic allocations in such

a way that random allocations of agents with identical preferences are asymptoti-

cally uncorrelated. Formally, a sequence of allocations µq can be implemented in

a Pareto-efficient and asymptotically-uncorrelated way if there exists a probability

space Ω such that conditional allocations µq (·, ·|ω) for ω ∈ Ω are deterministic and

Pareto efficient, and for any a ∈ Θ the maximum over i, j ∈ Nq with the same pref-

erence type of the covariance of random variables Xi:q : Ω � ω �→ µq (i, a|ω) and

Xj:q : Ω � ω �→ µq (j, a|ω) goes to 0 as q → ∞. The first part of this assumption

– that µq (·, ·|ω) are deterministic and Pareto efficient – is known as ex-post Pareto

efficiency.

Remark 3. Any sequence of allocations generated by Random Priority on a full-

support preference profile has Pareto-efficient and asymptotically-uncorrelated im-

plementation. We give an argument for Random Priority; the arguments for the
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other mechanisms are analogous. Take Ω to be the space of sequences of orderings

of agents in q-economies; conditional on the ordering of agents Random Priority is

deterministic and Pareto efficient. Fix q, a preference profile in PNq , and an order-

ing �∈ P. Denote by na the number of agents of type � getting a under the fixed

preference profile, and let n =
�

a∈Θ na. The correlation between two agents i and

j of type � getting a is the average of such correlations conditional on the profile of

numbers na, a ∈ Θ. The symmetry among agents of the same preference type implies

that conditional on a profile of na, a ∈ Θ, the covariance is

na

n

na − 1

n− 1

�
1− na

n

�2
+ 2

na

n

�
n− na

n− 1

� �
1− na

n

� �
0− na

n

�
+

+

�
n− na

n

� �
n− 1− na

n− 1

� �
0− na

n

�2
=

na (na − n)

n2 (n− 1)
∈

�
− 1

4 (n− 1)
, 0

�
.

The correlation thus converges to 0 as q → ∞ as along asymptotically full-support

profiles, n, the number of agents of type � grows to infinity.26

Theorem 4. If a sequence of symmetric mechanisms φq is asymptotically equicon-

tinuous, and random allocations φq

�
�Nq

�
can be implemented in Pareto-efficient and

asymptotically uncorrelated way for any �Nq∈ PNq with asymptotically full-support,

then mechanisms φq are asymptotically ordinally efficient.

The proof of this theorem relies on the following lemma.

Lemma 1. Fix a sequence of preference profiles �Nq with asymptotically full-support.

If a sequence of symmetric random allocations µq can be implemented in Pareto-

efficient and asymptotically uncorrelated way, then it is asymptotically ordinally effi-

cient.

This is of independent interest as it shows that asymptotic ordinal efficiency ob-

tains on asymptotically full-support profiles (an asymptotically generic class of pro-

files) even if the asymptotic equicontinuity assumption is violated.27

26The convergence is uniform on any class of uniformly asymptotically full-support profiles.
27A uniform analogue of the lemma holds true; see the proof of Theorem 4 for an argument.
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Proof. To prove asymptotic ordinal efficiency we need to prove that the allocations

are � (q)-ordinally efficient for some �(q) → 0 as q → ∞. By way of contradiction,

assume that there is � > 0, and a sequence of qn → ∞, such that the allocations

in the qn-economies are not �-ordinally efficient. Because there is a finite number

of agent types �∈ P, the compactness of [0, 1] allows us to subsample the sequence

qn and assume that the proportion of each type converges to a constant. The limit

proportions then add up to 1, and – by asymptotic full support of the preference

profiles – are positive.

For any a ∈ Θ, symmetry of allocations implies that the probability µqn (i, a) is

the same for all agents i of a particular type �∈ P. Because there is a finite number

of agent and object types, the compactness of [0, 1] allows us also to subsample the

sequence qn and assume that µqn (i, a) converges to a constant µ∞ (�, a) ∈ [0, 1].

Because ex post Pareto efficiency implies conditions (i) and (ii) of �-ordinal effi-

ciency, it must be condition (iii) that is violated for each qn. The violation of (iii)

would mean that for each qn there is a cycle of agents i0, ..., im and objects a0, ..., am

such that ik gets a higher-than-� probability of ak, and ak+1 �ik ak (subscripts modulo

m + 1). Denoting by �k the preference ranking of agent ik, we get µ∞ (�k, ak) ≥ �.

Consider now a Pareto-efficient and asymptotically uncorrelated implementation

of µqn . Let Ω be the associated probability space. Applying the weak law of large

numbers to random variables Xi:q : Ω � ω �→ µq (i, a|ω), we conclude that for any

�̃ > 0 and q large enough, the proportion of agents of type�k is within �̃ of µ∞ (�k, ak)

with probability at least 1 − �̃. This implies that there are some agents i�0, ..., i
�
m of

types �0, ...,�m (respectively) who are allocated objects a0, ..., am (respectively) at

some state of nature ω. This, however, contradicts Pareto efficiency of the allocation

µq (·, ·|ω).

We are now ready to prove Theorem 4:

Proof. Fix a class S of asymptotically full-support sequences of preference profiles

�AFS
Nq

such that for some δ > 0 and positive integer q̄, for all q > q̄, each ranking
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�∈ P is represented in �AFS
Nq

by at least fraction δ of agents.

First notice that if the asymptotic ordinal efficiency of φq

�
�AFS

Nq

�
does not obtain

uniformly on S then there is � > 0 and a sequence of sequences of preference profiles
�
�AFSk

Nq

�

q=1,2,...
, k = 1, 2, ... such that φq

�
�AFSq

Nq

�
is not �-ordinally efficient. While

the sequence of profiles
�
�AFSq

Nq

�

q=1,2,...
does not need to belong to S, we can conclude

that it has asymptotically full-support. By Lemma 1, φq

�
�AFS

Nq

�
is asymptotically

ordinally efficient, and the contradiction allows us to conclude that the asymptotic

ordinal efficiency of φq

�
�AFS

Nq

�
obtains uniformly on S.

To finish the proof, take any sequence of profiles �Nq∈ PNq . There is a sequence

of profiles
�
�AFS

Nq

�

q=1,2,...
∈ S such that (3) is satisfied. The above conclusion and

inequality (2) imply that φq

�
�Nq

�
satisfy conditions (i)-(iii) of �-ordinal efficiency,

where � → 0 as q → ∞, uniformly on �Nq∈ PNq . Allocations φq

�
�Nq

�
are thus

asymptotically ordinally efficient, uniformly on �Nq∈ PNq .

Theorem 4 and Remarks 2 and 3 allow us to answer the questions posed at the

beginning of this section: all the mechanisms listed are asymptotically ordinally effi-

cient as long as the number of copies of objects is unbounded as the economy grows

(with no further assumption on the rate of growth).

Let us finish by noting the following direct corollary of Theorem 4 and 2:

Corollary 3. All asymptotically equicontinuous sequences of symmetric and asymp-

totically strategy-proof mechanisms φq such that random allocations φq

�
�Nq

�
can be

implemented in Pareto-efficient and asymptotically uncorrelated way for any �Nq∈

PNq with asymptotically full-support, coincide asymptotically.

This corollary phrases the conditions for convergence in easy-to-verify terms.
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7 Conclusion

Theorem 4, Corollary 2, and Remarks 2 and 3, establish asymptotic equivalence of

a broad class of mechanisms that include Probabilistic Serial, Random Priority, and

symmetric randomizations over Hierarchical Exchange, and Trading Cycles. We have

shown that all these mechanisms are symmetric, asymptotically ordinally efficient,

and asymptotically strategy-proof (and also asymptotically envy-free). In large mar-

kets, the choice among these mechanisms need to be based on criteria other than

efficiency or fairness.

With the exception of the equivalence between Random Priority and Probabilis-

tic Serial discovered in the seminal paper by Che and Kojima (2010), the asymp-

totic equivalence of this mechanisms, and their ordinal efficiency properties, are new.

Furthermore, our general results show that the surprising asymptotic equivalence of

Probabilistic Serial and Random Priority is not a coincidence but a fundamental

property of allocation in large markets.28

While we study single-unit assignment, Theorems 1, 2, and 3 remain valid for

multi-unit assignment problems when agents have lexicographic-responsive prefer-

ences over bundles of objects (c.f. Roth, 1985); each agent has a strict ranking of

objects and chooses between two bundles A and B by comparing the best object

from A not available in B with the best object from B not available in A. Our proofs

remain valid. In general, this part of our analysis builds on the ingenious construc-

tion of Bogomolnaia and Moulin (2001) Probabilistic Serial mechanism. This central

mechanism has been extended to many settings and analogues of some of our results
28The above results allow us also to obtain new insights into strategy-proofness properties of Prob-

abilistic Serial. Kojima and Manea (2010) showed that agents have incentives to report preferences
truthfully in Probabilistic Serial if the number of copies is large enough relative to a measure of
variability of an agent’s utility, and Che and Kojima (2010) showed asymptotic strategy-proofness
of Probabilistic Serial provided the number of copies has asymptotically the same rate of growth as
|Nq|. Like Che and Kojima (2010), our results does not rely on assumptions on an agent’s utility.
The results allow us to relax Che and Kojima (2010) assumption on the number of object copies, as
well as show that no assumption on the number of copies is needed for asymptotic strategy-proofness
at asymptotically full-support preference profiles.
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are likely true in some of these more general settings; exploring them is a topic for

future work.29

A Proof of Theorem 2

It is enough to prove the theorem under the additional assumption that one of the

allocation sequences, µ�q, is generated by Probabilistic Serial. To prove the first part

of the theorem, fix any sequence of full-support preference profiles �Nq , and random

allocations µq that are envy-free and ordinally efficient with respect to the preference

profiles. Asymptotic ordinal efficiency implies that for any small � > 0 and large

M > 0 there is q̄ such that for q ≥ q̄, the allocations are �
M2 -ordinally efficient, and,

in particular, there are no two agents who could swap probability shares of size �
M2

in some two objects. By asymptotic envy-freeness we can assume that for q ≥ q̄ each

agent’s i allocation �
M2 -first order stochastically dominates allocations of any other

agent j in agent’s i preferences, that is

�

b�ia

µq (i, b)−
�

b�ia

µq (j, b) ≥ − �

M2
for all a ∈ Θ.

We fix q ≥ q̄ and, to economize on notation, we drop the q-subscript when referring

to this fixed economy N = Nq and its allocation µ = µq. As in Section 3, we do

not explicitly mention the preference argument when referring to the allocation of

Probabilistic Serial ψ.

To prove the theorem it is enough to show that

�

a��ia

µ (i, a�) ≥
�

a��ia

ψ
t (i, a�)− �

M
(5)

29For extensions of Probabilistic Serial see Katta and Sethuraman (2006) (non-strict preferences),
Yilmaz (2010) (existing property rights), and Kojima (2009) and Budish, Che, Kojima, and Milgrom
(2011) (multiple unit assignment). Theorem 4 is unlikely to generalize to multiple-unit assignment;
see Budish and Cantillon (2010) for examples of inefficiency of Random Priority in multi-unit as-
signment.
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for all t ∈ [0, 1], agents i, and objects a ∈ Θ. Indeed, this set of inequalities

for t = 1, together with �
M -ordinal efficiency of Probabilistic Serial ψ1 imply that

|µ (i, a)− ψ1 (i, a)| < � for all i and a, provided M is high enough.

By way of contradiction, assume the above inequality fails for some time, agent,

and object. Let T be the infimum of t ∈ [0, 1] such that there exists i ∈ N and b ∈ Θ

such that
�

a�ib
µ (i, a) <

�
a�ib

ψt (i, a)− �
M . Since there are finite number of agents

and objects, there is an agent and object for which the infimum is realized; let us

fix such an agent and such an object, and call them i and b, respectively. Let us

assume that b is the highest ranked object in i’s preferences for which the infimum is

realized. We structure the rest of the proof as to highlight the parallels to the proof

of Theorem 1.

Step 1. Inequalities (5) are satisfied for all t ∈ [0, T ]. In particular, the cutoff time

T belongs to [0, 1). Indeed, by definition, inequalities (5) are satisfied for all t ∈ [0, T ).

Because the inequalities are satisfied when t = 0, and the mapping t �→ ψt (i, a) is

continuous, inequalities (5) are also satisfied for t = T.

Step 2. In the eating procedure, agent i must be eating from b at time T . Indeed,

if i is eating from an object a �i b at T , then ψT (a�) = 0 for all objects a� ≺i a,

and hence if (5) is violated for agent i and object b then it is violated for agent i and

object a. This would contradict the assumption i ranks b above all other objects for

which the infimum T is realized. If i is eating from an object a ≺i b at time T then
�

a��ia
µ (i, a�) ≥

�
a��ib

ψT (i, a�)− �
M =

�
a��ib

ψt (i, a�)− �
M for t just above T , again

contrary to T being the infimum of t at which (5) is violated for i and b.

Step 3. Agent i gets object b or better with probability T− �
M , that is

�
a��ib

µ (i, a�) =

T − �
M . Indeed, by Step 2, agent i is eating from b at time T in the eating proce-

dure, and thus
�

a��ib
ψT (i, a�) = T . Because (5) is satisfied for t = T , we get

�
a��ib

µ (i, a�) ≥
�

a��ib
ψT (i, a�) − �

M = T − �
M . The inequality is binding because

functions t �→ ψt (i, a�) are continuous in t and T is the infimum of times at which (5)

is violated.
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Step 4. If b is the favorite object of agent j ∈ N , then µ (j, b) ∈
�
T − �

M , T − �
M + �

M2

�
.

Indeed, by Step 1, the top choice object b is still available at time t in the eating

procedure, and thus ψT (j, b) = T . Because (5) is satisfied at time T we thus get

µ (j, b) ≥ T − �
M . Furthermore, envy-freeness of µ implies that µ (j, b) ≤ T − �

M + �
M2

as otherwise the outcome of agent i would not �
M2 -first-order stochastically dominate

for agent i the outcome of agent j .

Step 5. If b is the favorite object of agent j ∈ N , then ψ1 (j, b) > T . Indeed,

if not, then in the eating procedure b would be exhausted at time T , contrary to i

eating b at time T and thus at some times t > T .

Step 6. There is an agent k ∈ N such that µ (k, b) > ψ1 (k, b) + 3�
M2 . Indeed, by

the asymptotic full-support assumption at least a fraction δ of agents ranks b as their

first choice. Steps 3 and 4 imply that under µ these agents get at least (M−1)�
M2 less b

than they get under ψ. Because δ > 0 and is independent of M , for M large enough,

the �
M2 -ordinal efficiency of µ implies that there must be another agent k who gets

3�
M2 more b under µ than under ψ1.

Step 7. There is an object c �= b that agent k from Step 6 ranks just above b.

Indeed, the claim follows from Steps 4, 5, and 6.

Let us fix agent k and object c satisfying Steps 6 and 7.

Step 8. Under µ, agent k gets object b or better with probability strictly higher

than T− �
M + 3�

M2 . Indeed, Step 1 and the availability of object b at time T in the eating

procedure imply that
�

a�kc µ (k, a) ≥
�

a�kc ψT (k, a) − �
M = T − ψT (k, b) − �

M ≥

T − ψ1 (k, b)− �
M . The claim then follows from Step 6.

To conclude the proof, notice that by the asymptotic full support assumption,

there exists an agent j who ranks objects in the same way as agent k except that

i puts b first. By Step 6, µ (k, b) >
�

M2 , and thus lack of swaps of size �
M2 (the

consequence of ordinal efficiency of µ) implies that
�

a�kb µ (j, a) <
�

M2 . Step 4 thus

implies that under µ the probability j gets object c or better is between T − �
M and

T − �
M + 2�

M2 , and, by Step 8, it is smaller than the probability k gets these objects.
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This contradicts envy-freeness of µ. The contradiction proves (5), and the first part

of the theorem.

An examination of the above argument shows that the choice of �, M , and q̄ can be

made uniformly on a class of preference profile sequences with uniformly asymptotic

full-support, proving the second part of the theorem.

B Asymptotic Genericity of Asymptotically Full-Support

Sequences of Preference Profiles

A set S of sequences of preference profiles is asymptotically generic if for every � > 0

there exists a sequence of sets Sq ⊂ Pq of preference profiles in q-economies such that

for q large enough the ratio |Sq |
|Pq | > 1− �, and all sequences of profiles from Sq are in

the set of sequences S.

Proposition 1. Asymptotically full-support profiles are asymptotically generic.

Proof. Let Sδ
q ⊂ Pq be the set of preference profiles such that, for any ranking of

objects � in the q-economy, the proportion of agents whose ranking agrees with � to

|Nq| is above δ. Take � > 0 and notice that for q large enough there exists δ (�) > 0

such that
˛̨
˛Sδ(�)

q

˛̨
˛

|Pq | > 1− �. To complete the proof it is enough to set Sq = Sδ(�)
q .
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