
A Pseudo-Market Approach to Allocation with Priorities∗

Yinghua He Antonio Miralles Marek Pycia Jianye Yan

July 2017

Abstract

We propose a pseudo-market mechanism for no-monetary-transfer allocation of in-

divisible objects based on priorities such as those in school choice. Agents are given

token money, face priority-specific prices, and buy utility-maximizing random assign-

ments. The mechanism is asymptotically incentive compatible, and the resulting as-

signments are fair and constrained Pareto efficient. Aanund Hylland & Richard Zeck-

hauser (1979)’s position-allocation problem is a special case of our framework, and our

results on incentives and fairness are also new in their classical setting.
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We study the allocation of indivisible objects where monetary transfers are precluded and

agents demand at most one object. Examples include student placement in public schools

(where an object corresponds to a school seat and each object has multiple copies) and

allocation of work or living space (where each object has exactly one copy). A common

feature of these settings is that agents are prioritized. For instance, students who live in

a school’s neighborhood or have siblings in the school may enjoy admission priority at this

school over those who do not, and the current resident may have priority over others in the

allocation of the dormitory room he or she lives in.

Due to the lack of monetary transfers, objects in these environments are very often allo-

cated by a centralized mechanism which maps agents’ reported preferences to an allocation

outcome. The outcome, known as assignment, can be either deterministic or random. The

former dictates who gets what object, and the latter prescribes the probability shares of

objects that each agent obtains and thus is a lottery over a set of deterministic assignments.

The standard allocation mechanisms used in practice and studied in the literature are

ordinal: students are asked to rank schools or rooms, and the profile of submitted rankings

determines the assignment. However, Antonio Miralles (2008) and Atila Abdulkadiroglu,

Yeon-Koo Che & Yosuke Yasuda (2011) pointed out that we may implement Pareto domi-

nant assignments by eliciting agents’ cardinal utilities, which are their relative intensities of

preferences over objects and their rates of substitution between probability shares in objects.

Furthermore, Qingmin Liu & Marek Pycia (2012) and Marek Pycia (2014) showed that sen-

sible ordinal mechanisms are asymptotically equivalent in large markets, while mechanisms

eliciting cardinal utilities maintain their efficiency advantage.1 Naturally, with more inputs,

we expect a mechanism to deliver a better outcome, as cardinal preferences are more infor-

mative than ordinal ones. However, what has not been answered in the literature is how to

use cardinal information efficiently.

This paper aims to fill this gap by providing a novel cardinal mechanism to improve upon

1The data on Boston and NYC school choice corroborates both the equivalence of ordinal mechanisms
(see e.g., Parag A. Pathak & Tayfun Sonmez (2008) and Atila Abdulkadiroglu, Parag A. Pathak & Alvin E.
Roth (2009)) and the inefficiency of ordinal mechanisms (Atila Abdulkadiroglu, Nikhil Agarwal & Parag A.
Pathak 2015). For analysis of ordinal mechanisms see the seminal work of Atila Abdulkadiroglu & Tayfun
Sonmez (2003) and Anna Bogomolnaia & Herve Moulin (2001). The literature discussion below also includes
other papers emphasizing the need to elicit cardinal information.
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the ordinal mechanisms. The mechanism is asymptotically incentive compatible, fair, and

constrained efficient among ex-ante stable and fair mechanisms. A mechanism is ex-ante

stable if, in any of its resulting assignment, no probability share of an object is given to an

agent with lower priority at this object whenever a higher-priority agent is obtaining some

probability shares in any of his/her less preferred objects (Onur Kesten & M. Utku Ünver

2015). Furthermore, every deterministic assignment that is compatible with an ex-ante stable

random assignment eliminates all justified envy and thus satisfies stability (Abdulkadiroglu

& Sonmez 2003). We use the strong fairness concept, equal claim, proposed by Yinghua He,

Sanxi Li & Jianye Yan (2015); a mechanism satisfies equal claim if agents with the same

priority at an object are given the same opportunity to obtain it.

We refer to our construction as the pseudo-market (PM) mechanism which elicits cardinal

preferences from agents and delivers an assignment. If it is a random assignment, one can

then conduct a lottery to implement one of the compatible deterministic assignments. To

map reported preferences into assignments, PM internally solves a Walrasian equilibrium,

where prices are priority-specific and the mechanism chooses probability shares to maximize

each agent’s expected utility given his/her reported preferences and an exogenous budget in

token money. Budgets need not be equal across agents.

This Walrasian equilibrium used in the internal computation of the PM mechanism has

a unique feature in its priority-specific prices: for each object, there exists a cut-off priority

group such that agents in priority groups strictly below the cut-off face an infinite price

for the object (hence, they can never be matched with the object), while agents in priority

groups strictly higher than the cut-off face zero price for the object. By incorporating

priorities in this manner, the PM mechanism extends the canonical Hylland & Zeckhauser

(1979) mechanism which requires every agent to face the same prices and thus does not

allow priorities. It is also a generalization of the Gale-Shapley Deferred-Acceptance (DA)

mechanism, the most celebrated ordinal mechanism. Essentially, when both agents and

objects have strict rankings over those on the other side, the DA mechanism eliminates all

justified envy; whenever there are multiple agents in one priority group of an object, the

tie has to be broken, usually in an exogenous way. The PM mechanism, instead, has ties

broken endogenously and efficiently by using information on cardinal preferences. Agents
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with relatively higher cardinal preferences for an object obtain shares of that object before

others who are in the same priority group.

We show that the PM mechanism is well-defined in the sense that it can always internally

find a Walrasian equilibrium and deliver an assignment given any reported preference profile.

Moreover, the mechanism is shown to be asymptotically incentive compatible in regular

economies, where regularity guarantees that Walrasian prices are well defined as in the

classical analysis of Walrasian equilibria (see e.g., Egbert Dierker (1974), Werner Hildenbrand

(1974), and Matthew O. Jackson (1992)). The latter result is also new in the original Hylland

& Zeckhauser (1979) problem and proves the long-standing conjecture they formulated.2 As

in the setting without priorities (see e.g., Abdulkadiroglu, Che & Yasuda (2011) and Pycia

(2014)), the PM mechanism allows one to achieve higher social welfare than mechanisms

eliciting only ordinal preferences such as the DA and the Probabilistic Serial mechanisms.

The PM mechanism is ex-ante stable because of our design of the priority-specific prices.

Given an object s and its cut-off priority group, whenever a lower-priority agent obtains a

positive share of s, a higher-priority agent must face a zero price for s, and, therefore, is

never assigned to an object they prefer less than s.

We study fairness of the PM mechanism in the sense of equal claim, which requires that,

for any given object, agents with the same priority are given the same opportunity to obtain

this object.3 Since prices for agents in the same priority group are by construction the same

in the PM mechanism, we can conclude that equal claim is satisfied when agents are given

equal budgets. Furthermore, we show that the PM mechanism in which agents have equal

budgets is the only non-wasteful mechanism that satisfies ex-ante stability and equal claim.

Focusing on assignments that are ex-ante stable and equal-claim, we analyze efficiency:

an assignment is constrained Pareto efficient if no other assignment that satisfies ex-ante

2Stating the true preferences in the PM mechanism is not always a dominant strategy for every agent.
Hylland & Zeckhauser (1979) give an example where there are incentives for agents to misreport their
preferences when objects do not rank agents. More generally, one calls a mechanism strategy-proof if
reporting true preferences is a dominant strategy; Alvin E. Roth (1982) and Lin Zhou (1990) show strategy-
proofness is in conflict with other desirable properties. In addition to proving the asymptotic incentive
compatibility of the PM mechanism in regular economies, we also prove that it is limiting incentive compatible
in the sense of Donald John Roberts & Andrew Postlewaite (1976).

3See He, Li & Yan (2015) for an analysis of this concept in the setting without priorities. Note that equal
claim does not imply that same-priority agents at an object receive the same probability share of that object
in the final assignment.
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stability and equal claim dominates it in terms of agents’ welfare.4 An important corollary

of our results is that a constrained Pareto-efficient assignment is always an outcome of the

PM mechanism with equal budgets.

One may be interested in two-sided efficiency if the priority structure is closely related

to object suppliers’ preferences, e.g., when schools’ priority ranking over students reflect a

school district’s preferences. An assignment is ex-ante two-sided Pareto efficient if it is not

Pareto dominated by any other assignment with respect to both agents’ expected utilities

and objects’ priorities treated as their ordinal preferences. When the welfare of objects is

evaluated in terms of first-order stochastic dominance with respect to priorities,5 PM always

delivers assignments that satisfy ex-ante two-sided efficiency.

The PM mechanism is therefore a promising candidate that can be used in school choice,

dormitory room allocation, and other allocation problems based on priorities. Moreover, it

is flexible enough to accommodate additional constraints such as group-specific quotas.

Literature Review The early literature on school choice, the focal topic of priority-

based allocation, e.g., Abdulkadiroglu & Sonmez (2003) and Haluk Ergin & Tayfun Sonmez

(2006), followed the two-sided matching literature where it is common to assume that both

sides strictly rank the other side. Implicitly, weak priorities are augmented with random

lotteries to create strict priorities. It has been noted that when priorities are coarse, some

issues arise. For example, stability no longer implies Pareto efficiency (Aytek Erdil & Haluk

Ergin 2006); and, more importantly, how ties are broken affects the welfare of agents since it

introduces artificial constraints. Extending the DA mechanism, Aytek Erdil & Haluk Ergin

(2008) propose an algorithm for breaking priority ties and the computation of agent-efficient

stable matchings when priority rankings are weak and only ordinal information is elicited.

The two algorithms proposed by Kesten & Ünver (2015) offer further ways to break priority-

ties in ordinal settings. However, Abdulkadiroglu, Pathak & Roth (2009) and Onur Kesten

(2010) show that the inefficiency associated with a realized tie breaking in ordinal setting

4The literature on ordinal mechanisms that follows Bogomolnaia & Moulin (2001) defines efficiency in
terms of first-order stochastic dominance; since we study expected-utility-maximizing agents, we can use
the standard Pareto efficiency concept. It should be noted that there are priority structures and stable
assignments that are Pareto dominated by assignments that are not stable; Abdulkadiroglu & Sonmez
(2003) construct relevant examples in the ordinal setting, and the same examples remain valid in our setting.

5That is, an object or object supplier is better off if agents matched with this object in the new assignment
first-order stochastically dominate those of the old one.
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cannot be removed without harming student incentives.

Noting that agents may differ in their cardinal preferences, a strand of literature (e.g.,

Clayton Featherstone & Muriel Niederle (2008), Miralles (2008), Abdulkadiroglu, Che &

Yasuda (2011), Peter Troyan (2012), Pycia (2014), Atila Abdulkadiroglu, Yeon-Koo Che

& Yosuke Yasuda (2015), and Itai Ashlagi & Peng Shi (2016)) emphasizes the importance

of eliciting signals of cardinal preferences from agents in matching mechanisms.6 Ties in

priorities can be broken with such signals, although the space of preference profiles or sig-

nals considered in these papers is restricted. Our PM mechanism elicits the entire relevant

utility information in a general setting. Moreover, compared to discrete signals of cardinal

preferences such as those in the popular Boston mechanism (defined in Appendix A), the

PM mechanism has the advantage of being (asymptotically) incentive compatible. It has

been shown theoretically (e.g., Pathak & Sonmez (2008)), experimentally (e.g., Yan Chen

& Tayfun Sonmez (2006)), and empirically (e.g., Atila Abdulkadiroglu, Parag A. Pathak,

Alvin E. Roth & Tayfun Sonmez (2006), Yinghua He (2012)), that strategic considerations

may put less sophisticated agents at a disadvantage. More importantly, these effects do

not disappear in large markets (Eduardo Azevedo & Eric Budish 2012). PM thus “levels

the playing field” by eliminating this strategic concern while keeping the benefits of using

cardinal preferences.

Our paper offers the first pseudo-market construction with priority constraints.7 In addi-

tion, we also contribute to the growing literature on pseudo-market mechanisms in settings

without priorities. The idea was first formulated by Hylland & Zeckhauser (1979). Miralles

(2008) establishes a connection between the mechanism and the Boston mechanism in set-

tings without priorities. Eric Budish (2011) and Eric Budish, Yeon-Koo Che, Fuhito Kojima

& Paul Milgrom (2013) extend the pseudo-market mechanism to multi-unit demand settings

such as course scheduling. Antonio Miralles & Marek Pycia (2014) show that every efficient

assignment can be decentralized through prices, establishing the Second Welfare Theorem

6In recent work, SangMok Lee & Leeat Yariv (2014) and Yeon-Koo Che & Olivier Tercieux (2014) show
that when agent’s utilities come from independent distributions, some ordinal mechanisms can be efficient.

7Notice that our paper subsumes Yinghua He (2011), Antonio Miralles (2011), Yinghua He & Jianye Yan
(2012), and Yinghua He, Antonio Miralles & Jianye Yan (2012) who proposed this construction and proved
it is well-defined. Subsequent work on personalized prices in pseudo-markets (e.g. Ashlagi & Shi (2016) and
He, Li & Yan (2015)) did not address the question of when personalized-price mechanisms respect priority
constraints.
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for the no-transfer setting without priorities. He, Li & Yan (2015) make the point that any

assignment, not necessarily efficient, can be decentralized by personalized prices.

Our analysis of fairness is related to Ashlagi & Shi (2016) who study a model with a

continuum of agents without priorities and show that the equal-budget PM mechanism can

implement any envy-free and Pareto efficient assignment. Envy-freeness is a weaker fairness

property than equal claim, and the characterization of the equal-budget pseudo market in

terms of envy-freeness and efficiency does not extend to large finite economies (see Antonio

Miralles & Marek Pycia (2015)).

Our analysis of the PM mechanism’s asymptotic incentive compatibility addresses a long-

standing open problem posed by Hylland & Zeckhauser (1979). We build on the classic

literature on the price-taking behavior of agents in exchange economies, e.g., Roberts &

Postlewaite (1976) and Jackson (1992). The only earlier analysis of incentive compatibility

of PM without priorities is Azevedo & Budish (2012) who show that it satisfies the strategy-

proofness-in-the-large criterion that they introduce provided that budgets are equal and the

number of utility types is finite and stays bounded as the market grows. Our result does not

hinge on either of these assumptions.8

Organization of the Paper Section I sets up the model for the priority-based allocation

problem. Section II defines the PM mechanism and establishes that it is well-defined. Section

III investigate its incentive compatibility. We present fairness properties of the mechanism

and its characterization in Section IV. Section V discusses results on its efficiency advantage

relative to some well known mechanisms. The paper concludes in Section VI.

8The equal-budget PM mechanism satisfies a restriction of Azevedo and Budish’s, EF-TB (envy-free
but for tie breaking), among agents of the same priorities at all objects. Building on this observation we
show that the equal-budget PM mechanism is strategy-proof-in-the-large provided that their environment
assumptions hold true. We provide the details in Appendix C. Work on other related mechanisms includes
Antonio Miralles (2012), Pycia (2014), and Isa Emin Hafalir & Antonio Miralles (2014), studying incentive
compatible, efficient mechanisms in specific parametric settings. Tadashi Hashimoto (2013) constructs an
ex post incentive-compatible mechanism that becomes efficient in large markets. Thanh Nguyen, Ahmad
Peivandi & Rakesh Vohra (2015) introduce an optimization-based efficient mechanism that is strategy-proof-
in-the-large. The asymptotic incentive properties of ordinal matching mechanisms have also been studied,
e.g., Fuhito Kojima & Parag A. Pathak (2009), Fuhito Kojima & Mihai Manea (2010), Fuhito Kojima,
Parag A. Pathak & Alvin E. Roth (2013), Liu & Pycia (2012), Marek Pycia (2011), SangMok Lee (2014),
and Itai Ashlagi, Yash Kanoria & Jacob D. Leshno (2014).
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I Model

We consider a priority-based allocation problem, or an economy, Γ = {S, I, Q, V,K}, where:

(i) S = {s}Ss=1 is a set of objects;

(ii) I = {i}Ii=1 is a set of agents, each of whom is to be matched with exactly one copy of

an object;

(iii) Q = [qs]
S
s=1 is a capacity vector, and qs ∈ N is the supply of object s, ∀s. For simplicity,

we assume that
∑S

s=1 qs = I, i.e., there are just enough copies of objects to be allocated

to agents; the extension to
∑S

s=1 qs 6= I is straightforward.

(iv) V = [vi]i∈I , where vi = [vi,s]s∈S and vi,s ∈ [0, 1] is agent i’s von Neumann-Morgenstern

(vN-M) utility associated with object s.

(v) K = [ks,i]i∈I,s∈S , where ks,i ∈ K ≡
{

1, 2, ..., k
}

is the priority group of agent i at object

s, and k (≤ I) is the maximum number of priority groups.9 Roughly speaking, [ks,i]i∈I

can be interpreted as s’s weak ranking over all agents, and a lower value of ks,i means

higher priority. That is, ks,i < ks,j if and only if i has a higher priority at object s

than j’s. We allow both strict and coarse priority structures, in particular, the special

case of interest when all agents have the same priority (the no-priority case).10

All objects and agents are acceptable to the other side, i.e., every agent considers every

object better than being unassigned and is qualified to be assigned to any object. The anal-

ysis can be extended to the setting with unacceptable objects/agents. Agents are assigned

to objects under the unit-demand constraint such that each agent must be matched with

exactly one copy of an object. In the following, unless otherwise stated, we require non-

wastefulness such that all copies of every object are to be assigned to some agents. Given

the acceptability of everyone on both sides, wastefulness clearly leads to Pareto inefficiency.

An assignment is a matrix Π = [πi]i∈I ; πi = [πi,s]s∈S and πi,s ∈ [0, 1] is agent i′s proba-

bility share of object s, or the probability that agent i is matched with object s. Given the

9It is innocuous to assume that every object has the same number of priority groups, as there might be
no agent in a particular group of an object.

10Our results on incentive compatibility and fairness are also new in this classical case.
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supply of the objects, an assignment is feasible if and only
∑

i∈I πi,s ≤ qs for all s. The set

of all feasible assignments is denoted by A. Moreover, the unit-demand constraint implies

that
∑

s∈S πi,s = 1 for all i, and non-wastefulness leads to
∑

i∈I πi,s = qs for all s.

Because an assignment Π ∈ A is defined in terms of probability shares, Π is commonly

known as random assignment; if, however, Π is degenerate, i.e., πi,s ∈ {0, 1} for all i and s,

it is also a deterministic assignment. Every feasible random assignment can be decomposed

into a convex combination of deterministic assignments and can therefore be resolved into

deterministic assignments (Kojima & Manea 2010), which generalizes the Birkhoff-von New-

mann theorem (Garrett Birkhoff 1946, John von Neumann 1953). Notice that the convex

combination may not be unique in general.

Given objects’ priorities and supply, a matching mechanism is a mapping from agents’

reported preferences, either cardinal or ordinal, to the space of feasible assignments, A.

II The Pseudo-Market Mechanism

Given the structure of priorities K and the capacities Q, the pseudo-market (PM) mechanism

maps a reported utility profile V = [vi]i∈I to a feasible assignment [πi]i∈I ∈ A by internally

finding a Walrasian equilibrium: it takes the exogenous budgets in token money [bi]i∈I ,

bi ∈ (0, 1], and finds a price matrix P = [ps,k]s∈S,k∈K ∈ P ≡[0,+∞]S×k, where ps,k is the

price of object s for agents in s’s priority group k, by solving the utility maximization problem

for every i,11

πi (vi, P ) ∈ arg max
πi,s

∑
s∈S

πi,svi,s

subject to:

(i) unit-demand constraint:
∑

s∈S πi,s = 1 for all i;12

11If ps,k = +∞, we define +∞ · 0 = 0 and +∞ · πi,s = +∞ if πi,s > 0.
12We model the unit-demand constraint as equalities. In other words, an agent’s preferences over

probability-share bundles that do not satisfy the equality are not defined in the mechanism (similar to
preferences of having two spouses in a one-to-one marriage-matching model). This definition allows practi-
tioner to announce in advance that every participant in the mechanism is guaranteed a copy of some object.

Alternatively, one can define the unit-demand constraint as weak inequalities,
∑

s∈S πi,s ≤ 1. This amounts
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(ii) feasibility constraint:
∑
i∈I

πi,s (vi, P
∗) ≤ qs for all objects s;

(iii) budget constraint:
∑
s∈S

ps,ks,iπi,s ≤ bi and the stipulation that if there are multiple

bundles maximizing her expected utility then a cheapest one is chosen.

(iv) priority constraint:13 k∗ (s) is the cut-off priority of object s if
∑

i∈I, ks,i<k∗(s)

πi,s (vi, P
∗) <

qs and
∑

i∈I, ks,i≤k∗(s)
πi,s (vi, P

∗) = qs; moreover,

p∗s,ks,i = 0, if ks,i < k∗ (s) ,

p∗s,ks,i ∈ [0,+∞), if ks,i = k∗ (s) ,

p∗s,ks,i = +∞, if ks,i > k∗ (s) .

The PM mechanism accommodates personalized exogenous budgets, but to economize

on notations, we focus on the mechanism with equal budgets such that bi = 1 for all i and

refer to the equal-budget PM mechanism simply as the PM mechanism. It should be

noted that all results except fairness in Section IV extend to the mechanism with unequal

budgets as long as budgets do not depend on reported utilities.

Given a reported utility profile, an assignment that can be resulted from the PM mech-

anism is a PM assignment. A price matrix in the internal Walrasian equilibrium of the

mechanism is called a PM price matrix or simply PM prices.14 To the extent that PM

assignments crucially depends on PM prices, we study the properties of prices to determine

assignment characteristics.

A unique feature of the PM mechanism is that the prices are designed to be priority-

specific and increase when we move down on the priority list. If s is consumed completely by

agents in priority groups higher than k∗ (s) (including k∗ (s)), agents in s’s priority groups

strictly below k∗ (s) face an infinite price, while those in priority groups strictly higher than

k∗ (s) face a zero price. Section IV discusses the implications of such a price structure.

to assuming that agents receive zero utility if unassigned. A PM mechanism can be similarly defined, and
the weak inequalities can be satisfied as equalities if vi,s ≥ 0 for all i and s, given that there is enough supply.

13In the setting in which all agents have the same priority at all objects (i.e., no priorities), this priority
constraint reduces to prices being non-negative and finite.

14By construction, a PM price matrix is also Walrasian equilibrium prices for the economy Γ augmented
with the given budgets.
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In this manner, the PM mechanism treats objects’ priorities as agents’ rights to obtain

an object at a lower, sometimes zero, price. Whenever some agents with lower priorities can

get a positive share of an object, an agent with a higher priority at that object can always

get it for free. More importantly, agents can choose not to exercise the right if they wish, but

they cannot trade priorities. This interpretation is similar to the consent in Kesten (2010)

that allows agents to waive a certain priority at an object, but is in contrast to the treatment

in the top-trading-cycles mechanism which implicitly allows agents to trade their priorities

(Abdulkadiroglu & Sonmez 2003).

Our first main result is the existence of the PM prices and assignment.

Theorem 1 Given any reported utility profile, there always exist a PM price matrix, and

thus the PM mechanism can always deliver a PM assignment.

Sketch of the Proof. The proof uses the traditional Kakutani’s fixed point theorem,

applied to a price matrix instead of a price vector. Our price space contains two features

worth mentioning. First, some prices can be infinite but the price space remains compact.15

Second, at high prices, e.g. at prices that are all above the agents’ budget, no agent can

afford to buy one unit of any object; the unit demand constraint is violated at such prices

but, as we show, not at equilibrium prices. In the proof we rely on an “artificial outside

option” that is infinitely supplied and always zero priced, and that for all agents is strictly

worse than any other object in the original economy. We show that there is an equilibrium of

this extended economy. Furthermore, because of our assumptions on total supply of objects

and because excess supply implies zero price at all priority groups, no equilibrium would

contain positive demand of the “artificial outside option”. Thus, the equilibrium of the

extended economy gives us an equilibrium of the original economy.

This key result shows that the PM mechanism is well-defined. The analogous result was

proven by Hylland & Zeckhauser (1979) for the classical economy without priorities. The

result is new for the case with priorities; the challenge in obtaining the result is the need to

incorporate the priority condition (iv).16 This condition is crucial in ensuring the fairness of

15Although not needed for the proof, we transform price matrix using the continuous function arctangent.
Transformed prices are always between 0 and π/2, which may be convenient in practical computation.

16Our paper subsumes He and Yan’s and Miralles’s work, who independently proposed the construction
of the PM mechanism with priority constraints.
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the mechanism under priority constraints (Section IV).

An economy can have more than one PM price matrix and multiple PM assignments, and

thus a complete specification of the mechanism must prescribe a price selection rule.17 Our

main results are robust to arbitrary selection rules, except those on incentive compatibility

in the next section, which address the selection issue directly.

III Asymptotic Incentive Compatibility

Our next analysis focuses on asymptotic incentive compatibility in sequences of replica

economies and considers the PM mechanism’s incentive properties in large markets.18 For

any base economy Γ = {S, I, Q, V,K}, we use Γ(n) =
{
S, I(n), Q(n), V (n), K(n)

}
to denote an

n-fold replica of Γ which is an economy such that: (i) for each i ∈ I, there are n copies of

i in I(n) whose preferences and priorities are exactly the same as i; (ii) S is constant in all

economies; and (iii) Q(n) = nQ, or equivalently q
(n)
s = nqs for all s and n. In the sequence

of replica economies
{

Γ(n)
}
n∈N, each Γ(n) has n copies of the base economy Γ. Notice that

the set of PM prices is constant along any sequence of replica economies, provided that all

agents report truthfully.19

We consider a natural analogue of regular economies from the general equilibrium liter-

ature (e.g., Dierker (1974), Hildenbrand (1974), Jackson (1992)).20 To define this regularity

concept, we use the Prohorov metric ρ to measure the distance between two distributions,

µ and ν:

ρ (µ, ν) = inf
{
ε > 0|ν (E) ≤ µ (Bε (E)) + ε & µ (E) ≤ ν (Bε (E)) + ε, E ⊆ [0, 1]S×I Borel

}
.

17In the market design literature, Alexander Kovalenkov (2002) is an exception to explicitly consider
selection rules in an approximate Walrasian mechanism.

18Given the impossibility result in Zhou (1990) and the example in Hylland & Zeckhauser (1979), it is
known that agents may have incentives to misreport their preferences in any finite market. See Appendix
C for an analysis of the limit incentive compatibility concepts defined by Azevedo & Budish (2012) and
Roberts & Postlewaite (1976).

19We make the replica assumption for simplicity but our analysis does not depend on it. See the end of
this section for an extension beyond replica economies.

20For simplicity, we follow Jackson (1992) in defining regularity directly in terms of price behavior; alter-
natively we could express the definition of regularity in terms of properties of excess demand functions as in
Dierker (1974) and Hildenbrand (1974).
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A distribution of utilities µ∗ is regular if there exists a neighborhood B of µ∗ and a finite

number m > 0 of continuous functions ψ1, ..., ψm from B to [0,+∞]S×k such that for every

distribution µ ∈ B the set of PM prices is {ψ1 (µ) , ..., ψm (µ)} and ψi (µ) 6= ψj (µ) for every

i 6= j. An economy Γ is regular if the corresponding distribution of utilities is regular. The

proofs for this section show that if the base economy is regular then so is any replica economy.

Our second main result is the asymptotic incentive compatibility of the PM mechanism.

A mechanism is asymptotically incentive compatible on a sequence of replica economies

Γ(n) if for every agent the utility gain from submitting a utility profile different from the truth

vanishes along the sequence. That is, for every ε > 0, there exists n∗ such that n > n∗ implies

that the utility gain from unilateral misreporting for every agent in Γ(n) is bounded by ε

when everyone else is truth-telling.

Theorem 2 There always exists a selection of PM prices in the definition of the PM mech-

anism such that the resulting PM mechanism is asymptotic incentive compatible on any

sequence of replica economies whose base economy has a regular distribution of utilities.

The above theorem shows that the utility gain from unilateral misreporting is bounded

for all agents in a large enough economy. An analogue of this result remains true beyond

replica economies: our proof of Theorem 2 also implies that the gain from manipulation

for any agent who is present in all economies in a sequence vanishes as the economy grows,

provided that the limit distribution of utilities is regular.21

Theorem 2 is new not only in the setting with priorities, but also in the canonical set-

ting without priorities first studied by Hylland & Zeckhauser (1979).22 While Hylland and

Zeckhauser conjectured that their mechanism is asymptotically incentive compatible, their

conjecture has so far remained open. The closest prior result was obtained by Azevedo &

Budish (2012) who introduced the concept of strategy-proofness-in-the-large and in a dis-

crete setting proved that every envy-free mechanism is incentive compatible in their sense.

In particular, their result implies that Hylland and Zeckhauser’s mechanism with equal bud-

gets is strategy-proof-in-the-large in large economies with a bounded number of utility types.

21In addition, Appendix C shows that the PM mechanism is limiting incentive compatible in the sense of
Roberts & Postlewaite (1976).

22See also e.g., Budish et al. (2013)
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Their approach hinges both on the equality of budgets and on there being a bounded number

of possible utility types; in contrast our result is valid in the standard model that allows a

continuum of utility types and it is valid for any profile of budgets.

IV Fairness under the Priority Constraint

We now discuss two complementary concepts of fairness: ex-ante stability of Kesten &

Ünver (2015), which captures the lack-of-justified-envy aspects of fairness, and the equal-

claim property of He, Li & Yan (2015), extended herein to the settings with priorities,

which captures the equality aspects of fairness. Our main result shows that, given a priority

structure, the set of equal-budget PM assignments is precisely the set of assignments that

are ex-ante stable and satisfy equal claim.

A Ex-Ante Stability

A key property of PM assignments is the ex-ante stability introduced by Kesten & Ünver

(2015). An assignment is ex-ante stable if it does not cause ex-ante justified envy. An as-

signment Π causes ex-ante justified envy of i ∈ I toward j ∈ I\ {i} if ∃s, s′ ∈ S such that

vi,s > vi,s′ , ks,i < ks,j, πj,s > 0, and πi,s′ > 0. In other words, agent i who has higher-priority

at s than another agent j has ex-ante justified envy towards j if j has positive probabil-

ity of obtaining object s, while with positive probability i obtains an object less preferable

than s. If an assignment causes ex-ante justified envy, then its every implementation with

positive probability generates deterministic assignments that are not justified-envy-free, or

not stable, in the sense of (Abdulkadiroglu & Sonmez 2003). This is an important consid-

eration as many school districts insist on avoiding justified envy, for example, NYC (Atila

Abdulkadiroglu, Parag A. Pathak & Alvin E. Roth 2005) and Boston (Atila Abdulkadiroglu,

Parag A. Pathak, Alvin E. Roth & Tayfun Sonmez 2005).

In defining the PM mechanism, we require that prices are zero above the cut-off priority

group and infinity below the cut-off. This restriction is both sufficient and necessary for the

ex-ante stability of PM. To see this necessity and sufficiency, we relax the PM construction

by allowing the prices to be agent-specific so that the matrix of all prices is [pi,s]i∈I,s∈S ∈
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[0,+∞]S.23 With personalized prices, without loss of generality, we can normalize each

agent’s possibly-unequal budget to be one.

We first restrict ourselves to the set of non-wasteful assignments. Given an economy

Γ, and a given personalized price vector Pi = [pi,s]s∈S ∈ [0,+∞]S, where pi,s is the price

of object s for agent i, we construct the demand correspondence of agent i, π∗i (vi, Pi), that

maximizes
∑

s∈S πi,svi,s subject to
∑

s∈S pi,sπi,s ≤ 1 among feasible πi such that
∑

s∈S πi,s = 1

and πi,s ≥ 0 for all objects s. The set of possible personalized prices PΓ is the set of all

possible personalized prices that can rationalize some assignment as a result of agents’ utility

maximization (given budgets). That is:

PΓ ≡

{
P ∗ = [P ∗i ]i∈I ∈ [0,+∞]I×S |∃πi ∈ π∗ (vi, P

∗
i ) ,

∑
i∈I

π∗i,s ≤ qs, ∀i ∈ I, ∀s ∈ S

}
.

The set of associated assignments is ΠΓ (P ∗) ≡
{

[πi]i∈I ∈ A|πi ∈ π∗ (vi, P
∗
i ) , ∀i ∈ I

}
for

P ∗ ∈ PΓ. Finally, ΠΓ ≡ ∪P ∗∈PΓ
ΠΓ (P ∗) is the set of all possible assignments that can be

supported as a result of agents’ utility maximization. Every feasible assignment can be

represented in this way, i.e., ΠΓ = A (see He, Li & Yan (2015) for details).

Because
∑

s∈S qs = I, the definition of the PM mechanism restricts its prices to be in the

following set:

PStableΓ ≡

P ∗ ∈ PΓ|∀s,∀π ∈ ΠΓ (P ∗) ,∃k′, p∗i,s =


0 if

∑
j∈I s.t. ks,j≤k′

πj,s < qs & ks,i < k′

+∞ if
∑

j∈I, s.t. ks,j≤k′
πj,s = qs & ks,i > k′

 .

By Theorem 1, PStableΓ 6= ∅, and thus the set of assignments ΠStable
Γ ≡ ∪P ∗∈PStableΓ

ΠΓ (P ∗) is also

non-empty. Furthermore, ΠStable
Γ corresponds exactly to the set of ex-ante stable assignments.

Proposition 1 ΠStable
Γ is the set of all non-wasteful ex-ante stable assignments.

The proof is provided in the appendix. Given the construction of the PM mechanism, we then

obtain the following.

Corollary 1 Every PM assignment is ex-ante stable.

23In addition to earlier drafts of our paper, personalized prices were studied for instance in He, Li & Yan
(2015).
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While we normalize the budgets to be equal, a simple re-scaling of personalized prices shows

that the above result is also true for the PM mechanism with unequal budgets.

The above construction can be naturally extended to possibly wasteful assignments in which∑
i∈I

πi,s = q′s ≤ qs for all schools. Indeed, our analysis goes through if we modify the “market-

clearing” conditions in the PM construction and substitute q′s in lieu of the actual capacities qs.

B Equal claim

The PM mechanism satisfies the strong fairness criterion of equal claim, introduced by He, Li & Yan

(2015) in a setting without priorities. This fairness criterion captures the idea that the mechanism

treats agents in the same priority class in the same way.24 An ex-ante stable assignment Π satisfies

equal claim if Π is an expected-utility-maximization outcome and in this maximization all agents

in any given priority group of s face the same price of s if budgets are equal, or the same (equal)

ratio of price to their budgets when budgets are unequal.

Definition 1 An ex-ante stable assignment Π satisfies equal claim if and only if, given equal bud-

gets, there exists P ∗ ∈ PStableΓ such that Π ∈ ΠΓ (P ∗) and that for any s, p∗i,s = p∗j,s whenever

ks,i = ks,j.

This definition allows Π to be wasteful. Nonetheless, the definition of the PM mechanism,

Theorem 1, and Corollary 1 together imply that in any economy Γ there exists a non-wasteful

ex-ante stable assignment satisfying equal claim.

C Characterization

Our main result on fairness says that our PM mechanism is characterized by the above two fairness

criteria.

Theorem 3 Given an economy Γ and equal budgets, the set of PM assignments is equivalent to

the set of non-wasteful assignments satisfying both ex-ante stability and equal claim.

Using this result, we can furthermore prove that in the special case in which agents’ preferences

and objects’ priorities are both strict, PM assignments are deterministic and stable.

24See He, Li & Yan (2015) for further discussion of this property.
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Theorem 4 In an economy Γ, if both agents and objects rank the other side strictly, every PM

assignment is deterministic, and the set of PM assignments is equivalent to the set of stable deter-

ministic assignments.

V Efficiency

Our welfare analysis starts with investigating the welfare of both agents and suppliers of objects,

where the latter’s preferences are assumed to be represented in the priority structure. In section

B, we turn to the agent welfare, which is the focus of the literature.

A “Welfare” of Both Sides

As objects’ priority ranking over agents do not necessarily reflect any underlying preferences of their

suppliers, it is natural to care only about the welfare of agents. However, there are exceptions, and

needless to say, priorities are usually not randomly chosen. For example, in school choice, priority

rules may reflect preferences of the local constituency such as minimizing transportation costs

(distance-based priorities) and/or encouraging investment in studying (test-score-based priorities).

When one is interested in taking the welfare of both sides into account, PM assignment is two-

sided Pareto efficient in terms of both agent preferences and object suppliers’ preferences defined

by priorities. In this context, we say that an assignment Π′ ∈ A is ex-ante two-side dominated

by another assignment Π ∈ A if:

∑
s∈S

πi,svi,s ≥
∑
s∈S

π′i,svi,s, ∀i ∈ I,∑
i∈{ks,i≤k}

πi,s ≥
∑

i∈{ks,i≤k}

π′i,s, ∀s ∈ S, ∀k ∈ K,

and at least one inequality is strict. That is, every agent has a weakly higher expected utility in

Π, and, for each object s, the assignment Π first-order stochastically dominates Π′ with respect to

the priority structure. An assignment is ex-ante two-sided efficient if it is not ex-ante two-side

dominated by any other assignment. We then obtain:

Theorem 5 Every PM assignment is ex-ante two-sided efficient.

If the problem is indeed two-sided, i.e., objects’ priorities represent some underlying possibly-

weak preferences, our results then make the PM mechanism a promising candidate for two-sided
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matching with weak preferences.

B Welfare of Agents

Our characterization result (Theorem 3) implies that no mechanism that is ex-ante stable and fair in

the sense of equal claim can dominate the PM mechanism in efficiency terms. We now illustrate via

examples how the PM mechanism can dominate other mechanisms.25 The first example (subsection

B.1) shows it outperforms the best possible ordinal mechanism even if the latter ignores priority

constraints. Subsection B.2 compares the PM with the DA and again shows the efficiency advantage

of the PM mechanism. In subsection B.3, we focus on the Boston mechanism, which is known to

elicit signals of cardinal preferences from agents. Indeed, we show that the Boston mechanism can

achieve the same PM assignment under some conditions (Proposition 2), but they otherwise differ.

An assignment Π′ ∈ A is ex-ante Pareto dominated for agents by another assignment Π ∈ A

if: ∑
s∈S

πi,svi,s ≥
∑
s∈S

π′i,svi,s,∀i ∈ I,

and at least one inequality is strict. An assignment is ex ante agent-efficient if it is not Pareto

dominated for agents by any other feasible assignment. The definition applies to both random and

deterministic assignments, and every deterministic assignment in any decomposition of an ex-ante

agent-efficient assignment is Pareto optimal for agents.

In general, the PM mechanism cannot achieve ex-ante agent-efficiency due to the priority struc-

ture, and Theorem 3 implies that any agent-efficient assignment satisfying ex-ante stability and

equal claim is a PM assignment.

The unique feature of PM is that it elicits and uses cardinal preferences to make the assignment.

This implies that the outcome has the potential to be more efficient than ordinal mechanisms.

In a one-sided setting (i.e., no priorities), Abdulkadiroglu, Che & Yasuda (2011) show cardinal

mechanisms can dominate ordinal ones, and, building on subsequent analysis by Pycia (2014), we

extend this result to the setting with priorities.

The following definition is useful for the comparison.

25The fact that some of the mechanisms we study can be dominated is known, see Ergin & Sonmez (2006),
Abdulkadiroglu, Che & Yasuda (2011), Troyan (2012), and Pycia (2014).
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Definition 2 An assignment Π∗ is ordinally efficient if there does not exist Π 6= Π∗ such that:

∑
s′ s.t. vi,s′≥vi,s

π∗i,s′ ≤
∑

s′ s.t. vi,s′≥vi,s
πi,s′ ,∀s ∈ S, i ∈ I,

where at least one inequality is strict. Π∗ is symmetric ordinal efficient if furthermore π∗i,s = π∗j,s,

∀s, whenever i and j have the same ordinal preferences.

B.1 The Cost of Ordinality

The following example, based on Pycia (2014), illustrates the extent to which restricting ourselves

to ordinal mechanisms may result in an efficiency loss.

Example 1 Let us consider the following economy with four agents (i1, ..., i4) and four objects

(s1, ..., s4) with one copy of each available:

Cardinal Preferences

Objects

Agent s1 s2 s3 s4

i1 1 ε ε2 0

i2 1 1− ε ε2 0

i3 1 ε2 1− ε 0

i4 1 ε2 ε 0

0 < ε < 0.5

Priority Structure

Objects

Agent s1 s2 s3 s4

i1 1 2 2 1

i2 1 2 1 1

i3 1 1 2 1

i4 1 2 2 2

Smaller number means higher priority.

Note that no pair of agents has the same priorities at all objects. The following prices and assign-

ment is an equilibrium outcome of the PM mechanism:

PM Priority-Specific Prices

Objects

Agent s1 s2 s3 s4

i1 2 1 1 0

i2 2 1 0 0

i3 2 0 1 0

i4 2 1 1 0

PM Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/2 0 0 1/2 1/2

i2 0 1 0 0 1− ε

i3 0 0 1 0 1− ε

i4 1/2 0 0 1/2 1/2

Like in Pycia (2014), we can replicate this example and compare the PM mechanism with the “best”
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ordinal mechanisms ignoring the priority constraint because Liu & Pycia (2012) showed that in large

economies, all regular, asymptotically strategy-proof, asymptotically symmetric, and asymptotically

efficient ordinal mechanisms deliver outcomes asymptotically equivalent to the symmetric ordinal

efficient assignments.

PS: Symmetric Ordinally Efficient Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/4 1/2 0 1/4 (1 + 2ε)/4

i2 1/4 1/2 0 1/4 (3− 2ε)/4

i3 1/4 0 1/2 1/4 (3− 2ε)/4

i4 1/4 0 1/2 1/4 (1 + 2ε)/4

Can be achieved by the Probabilistic Serial.

The above assignment can be implemented by the Probabilistic Serial (PS) whose definition is

in Appendix A.

Conclusion: Given ε ∈ (0, 0.5), the PS assignment is Pareto dominated by the above PM

assignment in terms of agent welfare, despite the fact that the PS assignment ignores priorities.26

The PM assignment delivers an total welfare 0 to 50 percent higher.

B.2 Comparison with the Gale-Shapley Deferred-Acceptance Mechanism

The Gale-Shapley Deferred-Acceptance (DA) mechanism, whose definition is also available in Ap-

pendix A, is a mechanism that has attracted the most attention both in the literature as well as in

practice. When it is implemented in settings where priorities are coarse/weak, some tie-breaking

rule is needed. For example, following reforms in NYC and Boston, the school choice program

uniformly randomly chooses a single tie-breaking order for equal-priority students at each school

and then employs the student-proposing DA using the modified priority structure.

From the perspective of tie-breaking, one may view the PM mechanism as a version of the DA

mechanism with coarse priorities on one side. The unique feature of the PM mechanism is that

the ties are broken endogenously according to cardinal preferences. The following example shows

a case where the PM dominates the DA.

26For PS that takes priorities into account, see Mustafa Oǧuz Afacan (2015). Such extensions of PS yield
assignments that are dominated by those from standard PS.
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Example 2 In the same setting as in Example 1, the assignment from the DA with single tie-

breaking (DA-STB) is as follows:

The DA-STB Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/4 1/6 1/12 1/2 (3 + 2ε+ ε2)/12

i2 1/4 7/24 11/24 0 (13− 7ε+ 11ε2)/24

i3 1/4 11/24 7/24 0 (13− 7ε+ 11ε2)/24

i4 1/4 1/12 1/6 1/2 (3 + 2ε+ ε2)/12

DA-STB: The DA mechanism with single tie-breaking.

Conclusion: The DA-STB assignment is Pareto dominated by the PM assignment in terms of

agents’ expected utility for ε ∈ (0, 0.5); the latter has a total welfare that is 16 to 89 percent higher.

It should be noted that Kesten & Ünver (2015) extend the DA mechanism and propose two

variants to deal with the tie-breaking on the object side. Since their mechanisms still rely on ordinal

preferences of agents, the cost of ordinality (Section B.1) still applies. Empirically, Abdulkadiroglu,

Agarwal & Pathak (2015) use data from the NYC high school match to show that possible improve-

ments upon the DA mechanism from various ordinal mechanisms are rather limited. In fact, the

best outcomes that the mechanisms in Kesten & Ünver (2015) can achieve are constrained ordinal

efficiency, which are necessarily dominated by ordinal efficient outcomes.27

We also note a special case in which agents’ preferences and objects’ priorities are both strict.

In this case, it must be that k = I and that there is exactly one agent in each priority group of any

object. Noting that any DA assignment when agents report true ordinal preferences is stable, we

have the following result as a corollary of Theorem 4:

Corollary 2 If both agents and objects rank those on the other side strictly, any DA assignment

when agents report true ordinal preferences is a PM assignment.

B.3 Comparison with the Boston Mechanism

The PM mechanism is closely related to another commonly used mechanism, the Boston mech-

anism, whose definition is available in Appendix A. It has been noted in the literature that the

27In recent work, Che & Tercieux (2014) provide modifications of DA to improve asymptotic efficiency.
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Boston mechanism elicits signals of agents’ cardinal preferences, and indeed sometimes the Boston

mechanism can yield PM assignments in Nash equilibrium.

Proposition 2 A PM assignment is also a Bayesian Nash equilibrium assignment of the Boston

mechanism, if every agent has strict preferences and consumes a bundle that either includes only

free objects (according to her own prices), or includes one object with a positive price in (1,+∞)

(according to her own price) and all others free to all agents.

Note that the above result is a sufficient condition, and the following example shows there are

other cases where the PM and Boston coincide.

Example 3 (The Boston Coincides with the PM Mechanism) In the same setting as in Ex-

ample 1, one can verify that the following strategies constitute a Nash equilibrium under the Boston

mechanism (with single tie-breaking), and the equilibrium outcome is exactly the PM assignment.

BM Equilibrium Strategies

Agent Rank-Order List

i1 s1 s4 . . . . . .

i2 s2 . . . . . . . . .

i3 s3 . . . . . . . . .

i4 s1 s4 . . . . . .

”. . .” indicates an arbitrary school.

BM Equilibrium Assignment

Objects Expected

Agent s1 s2 s3 s4 Utility

i1 1/2 0 0 1/2 1/2

i2 0 1 0 0 1− ε

i3 0 0 1 0 1− ε

i4 1/2 0 0 1/2 1/2

When agents do not have strict preferences, or at least one of them spends her budget on more

than one object with positive and finite prices, in general, a PM assignment is not an equilibrium

outcome of the Boston mechanism. More importantly, in addition to the Boston mechainism’s

disadvantages discussed in the literature review, not every equilibrium assignment of the Boston is

a PM assignment. The following example show this clearly.

Example 4 (The Boston Differs from the PM Mechanism) Let us consider the following

economy with three agents (i1, ..., i3) and three objects (s1, ..., s3) with one copy of each available.
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Moreover, there are no priorities. The unique PM price matrix and assignment are as follows:

Cardinal Preferences

Objects

Agent s1 s2 s3

i1 1 0.9 0

i2 1 0.6 0

i3 1 0.1 0

PM Prices

Objects

Agent s1 s2 s3

i1 15/8 9/8 0

i2 15/8 9/8 0

i3 15/8 9/8 0

PM Assignment

Objects

Agent s1 s2 s3

i1 0 8/9 1/9

i2 7/15 1/9 19/45

i3 8/15 0 7/15

Note that in the PM assignment, i2 purchases a positive probability share of both s1 and s2. More-

over, the Nash equilibrium of the Boston mechanism, which is unique in terms of outcomes, is that

i1 top ranks s2, while i2 and i3 top ranking s1, leading to an assignment different from the PM

assignment:

BM Equilibrium Strategies

Agent Rank-Order List

i1 s2 . . . . . .

i2 s1 s3 . . .

i3 s1 s3 . . .

”. . .” indicates an arbitrary school.

BM Assignment

Objects

Agent s1 s2 s3

i1 0 1 0

i2 1/2 0 1/2

i3 1/2 0 1/2

VI Concluding Remarks

This paper studies the allocation of indivisible goods based on priorities when monetary transfers

are not possible and agents have unit demand. We propose a pseudo-market (PM) mechanism,

which elicits agents’ cardinal preferences and delivers an assignment as bundles of probability

shares in objects. When doing so, the PM mechanism internally finds a Walrasian equilibrium in

which agents are endowed with budgets of token money and purchase bundles to maximize their

expected utility. The prices in the Walrasian equilibrium depend on agents’ cardinal preferences

and are priority-specific. More specifically, everyone in any given priority group of an object faces

the same price, while those who are in higher priority groups of an object face a lower, sometimes

zero, price of that object.

The mechanism has desirable properties. After showing the mechanism is well-defined, we prove

that it is asymptotically incentive compatible for agents to report cardinal preferences in a sequence
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of replica economies. Moreover, the mechanism delivers an assignment, which can be random or

deterministic, that satisfies ex-ante stability or eliminates ex-ante justified envy. The structure of

PM prices also guarantees that everyone in the same priority group of an object has an equal claim

to that object, whenever budgets are equal. The mechanism can deliver all assignments that are not

dominated by any assignment satisfying the above criteria. Because of the explicit use of cardinal

preferences, the PM mechanism has an efficiency advantage over other popular mechanisms.

These properties of the mechanism make it a promising candidate for real-life applications

to settings such as school choice. Schools often prioritize student applications, and the priority

structure is usually determined by the school district or local laws. In most cases, a school’s

priority ranking over students is not strict, which makes the PM a natural candidate to run seat

allocation. The mechanism guarantees that the resulting assignment is ex-ante stable and thus that

it can be implemented as a lottery over deterministic assignments that are stable. Furthermore,

as Abdulkadiroglu, Che & Yasuda (2011) point out, in settings such as school choice, students

may have similar ordinal preferences. Therefore, without information on cardinal preferences, the

efficiency that a mechanism can achieve may be limited.28 Indeed, using data from the high school

match in NYC, Abdulkadiroglu, Agarwal & Pathak (2015) show the potentials of eliciting cardinal

utilities in improving student welfare. By explicitly using students’ cardinal preferences, the PM

mechanism allows school districts to achieve such efficiency gains.29

The major concern with implementing the PM mechanism is the difficulty of eliciting cardinal

preferences from agents. For instance, Bogomolnaia & Moulin (2001) argue that agents partici-

pating in the allocation problem may have limited rationality/information and thus do not know

exactly their cardinal preferences. However, the evidence in Eric Budish & Judd Kessler (2014)

from an experiment of allocating course schedules to students via a pseudo-market mechanism

shows that the difficulty in reporting cardinal preferences does not prevent the mechanism from

outperforming its alternatives on multiple dimensions. Besides, more training and more time to

acquire information on cardinal preferences for agents may also lower this difficulty.

From a different perspective, one may consider the requirement of reporting cardinal preferences

as an incentive for agents to investigate whether an object is a good fit for her. Such information

28Whereas ordinal inefficiency may vanish in large markets (Yeon-Koo Che & Fuhito Kojima 2010), the
cardinal inefficiency of ordinal mechanisms persists (Pycia 2014).

29Note that one can accommodate group-specific quotas within the PM similarly to how they might be
accommodated within the DA mechanism (see e.g., Abdulkadiroglu & Sonmez (2003)): to accommodate
such quotas, one can divide each school into multiple sub-schools each of which has a quota equal to the one
for the corresponding group and gives that group the highest priority.

24



acquisition can even be welfare-improving (Yan Chen & Yinghua He 2015).

Another concern is that agents, especially children and their parents in educational settings,

may not be able to play the preference-revelation game optimally, even when telling the truth

is always optimal. For example, Alex Rees-Jones (2016) uses survey data and reports that 5.38

percent of the agents do not report true ordinal preferences under the DA mechanism, which is a

strategy-proof ordinal mechanism; Avinash Hassidim, Assaf Romm & Ran Shorrer (2016) report an

even higher rate, 19 percent, using data on agents’ behavior. However, misreporting behavior may

not affect the outcome or the assignment, because agents tend to omit objects that are unlikely to

be obtained by them (Gabrielle Fack, Julien Grenet & Yinghua He 2015, Georgy Artemov, Yeon-

Koo Che & Yinghua He 2017). Indeed, as documented in Hassidim, Romm & Shorrer (2016), at

most 1.4 percent of the agents misreport and end up with sub-optimal outcomes; even lower rates

are reported in Artemov, Che & He (2017). Nonetheless, as an incentive compatible mechanism,

the PM mechanism allows market designer to find ways to convince agents to report their true

preferences.
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Appendices

A Alternative Mechanisms

This appendix gives the definitions of three mechanisms: the Probabilistic Serial, the Boston

mechanism (also known as the immediate-acceptance mechanism), and the Gale-Shapley deferred-

acceptance mechanism.

The Probabilistic Serial is defined by the following symmetric simultaneous eating algorithm.

It is proposed for one-sided matching where objects do not rank agents. Each object s is considered

as an infinitely divisible object with supply qs that agents eat in the time interval [0, 1].

Round 1. Each agent eats away from her favorite object at the same unit speed, and the

algorithm proceeds to the next step when an object is completely exhausted.

Generally, in:

Round k (k>1). Each agent eats away from her most-preferred object among the remaining ones

at the same unit speed, and the algorithm proceeds to the next step when an object is completely

exhausted.

The process terminates after any round k when every agent has eaten exactly one total unit of

objects (i.e., at time 1). The assignment of an agent i is then given by the amount of each object

she has eaten during the run of the algorithm.

The Boston mechanism solicits rank-ordered lists of objects from agents, uses pre-defined

rules, including tie-breaking rules, to determine objects’ strict ranking over agents, and has multiple

rounds:

Round 1. Each object considers all the agents who rank it first and assigns its copies in order

of their priority at that object until either there are no copies of the object left or no such agents

left.

Generally, in:

Round (k>1). The k-th choice of the agents who have not yet been assigned is considered.

Each object that still has available copies assigns the remaining copies to agents who rank it as kth

choice in order of their priority at that object until either there are no copies of that object left or

no such agent left.

The process terminates after any round k when every agent is assigned a copy of some object,

or if the only agents who remain unassigned listed no more than k choices.

The Gale-Shapley Deferred-Acceptance (DA) mechanism can be agent-proposing or

object-proposing. In the former, the mechanism collects objects’ supplies and their priority struc-

ture over agents, as well as agents’ submitted rank-ordered lists of objects. When necessary, tie-

breaking rules are applied to form strict rankings of objects over agents. The process then has

several rounds:
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Round 1. Every agent applies to her first choice. Each object rejects the least preferred agents

in excess of its supply and temporarily holds the others.

Generally, in:

Round (k>1). Every agent who is rejected in Round (k − 1) applies to the next choice on her

list. Each object pools new applicants and those who are held from Round (k − 1) together and

rejects the least preferred agents in excess of its supply. Those who are not rejected are temporarily

held by the objects.

The process terminates after any Round k when no rejections are issued. Each object is then

matched with agents it is currently holding. The object-proposing DA mechanism is similarly

defined.

B Proofs

A Proof of Theorem 1

First, we make the price space compact by transforming [0,+∞]S×k to Z ≡ [0, π/2]S×k such

that ∀P ∈ [0,+∞]S×k, there is a Z ∈ Z and Z = [zs,k]s∈S,k∈K = [arctan (ps,k)]s∈S,k∈K, with

arctan (+∞) ≡ π/2 and tan (π/2) ≡ +∞.30 Since the arctangent function, arctan, is a positive

monotonic transformation, the reverse statement is also true such that ∀Z ∈ Z, there is a P ∈
[0,+∞]S×k and P = TAN (Z) ≡ [tan (zs,k)]s∈S,k∈K.

For the purposes of this proof, we also augment our economy with an “artificial outside option”

with infinite supply, s0, at which every agent has the same priority and necessarily face a zero price.

For every agent, her valuation of that this object is vs0 < min
i∈I

min
s∈S

vi,s, which guarantees that the

demand for s0 is zero in equilibrium.31 A price-adjustment process for our extended economy Γ is

defined as,

H [Z,G (T AN (Z) , u)]

≡

Y = [ys,k]s∈S,k∈K

∣∣∣∣∣∣ ys,k
(
[ds,k]k∈K

)
= min

{
π
2 ,max

[
0, zs,k +

(∑k
κ=1 ds,κ −

qs
I

)]}
∀ [ds,k]s∈S,k∈K ∈ G (T AN (Z) , u)

 ,

where u = (u1, · · · , uI) are agents’ reported utility profile, and G (T AN (Z) , u) is the per capita

demand correspondence for each priority group of each object in the extended economy. Demands

are well defined in the extended simplex ∆S+1 since object s0 always has a zero price.

Since G is the average of individual demand correspondences, it is then upper hemicontinuous

30We could alternatively work in the original space [0,+∞]S×k which is also compact. One may find the

transformation to [0, π]S×k useful when solving PM equilibrium computationally. Here and in the following,
with some abuse of notation, π, without subscript, is the mathematical constant, i.e., the ratio of a circle’s
circumference to its diameter.

31vs0 could even be negative. As we impose the unit-demand constraint, everyone’s total probability shares
of all objects must be exactly one. Therefore, agents may demand an object of negative utility.
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and convex-valued, and thus H [Z,G] has the same properties because it is a continuous function.

H [Z,G] therefore satisfies all the conditions of Kakutani’s fixed-point theorem, and there must

exist a fixed point Z∗ such that Z∗ ∈ H [Z∗, G (T AN (Z∗) , u)].

Note that not all fixed points, Z∗, lead to prices that satisfy the conditions of the PM mechanism.

For example, the prices implied by Z∗ may be higher for higher priority groups. More precisely,

given Z∗, there may exist [ds,k]s∈S,k∈K ∈ G such that ∀s and ∀k,

z∗s,k = min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
.

In other words,
∑k

κ=1 ds,κ = qs/I, ∀s; there exists k∗ (s) for each s such that (a) ds,k∗(s) > 0,∑k∗(s)
κ=1 ds,κ = qs/I, and z∗s,k∗(s) ∈

[
0, π2

)
; (b) if k < k∗ (s),

∑k
κ=1 ds,κ < qs/I and z∗s,k = 0; and (c)

if k > k∗ (s), ds,k = 0, and z∗s,k can be some value in [0, π/2]. The “indeterminacy” in (c) happens

because a finite price can sometimes be high enough to deter consumption by some agents.

We therefore need to impose some selection rule. If ds,k = 0, and z∗s,k ∈ [0, π/2) for some

k > k∗ (s), there must exist another Z∗∗ such that Z∗∗ ∈ H [Z∗∗, G (T AN (Z∗∗) , u)] and that if

k ≤ k∗ (s), z∗∗s,k = z∗s,k; and that if k > k∗ (s), z∗∗s,k = π/2. That is, the highest price is selected.

Now we show that an equilibrium contains no positive demand for the “artificial outside option”

s0. If that were the case, then there would be at least one school s ∈ S which is in excess supply:∑k̄
κ=1 ds,κ < qs/I. This however implies that z∗s,k = 0 for all k, that is, the price for s is zero for

everyone. Consider an individual i who has purchased a positive probability share of s0. Since

vi,s0 < vi,s, agent i’s bundle is not optimal, since substituting all probability shares in s0 for those

in s (at no cost) would strictly increase her expected utility. Therefore, P ∗∗ induces demands in the

simplex of the original economy, ∆S , and it is an equilibrium price matrix for the original economy.

In summary, P ∗∗ = TAN (Z∗∗) satisfies the conditions of prices defined in the PM mechanism

and indeed clears the market. Therefore, a PM price matrix exists, which implies the existence of

PM assignment.

B Proof of Theorem 2

Let us represent each economy by a probability measure. Let T = [0, 1]S × KS be the compact

space of utility-priority profiles endowed with the standard Euclidean distance. For any profile

(v, k) ∈ T and scalar ε > 0, let Bε (v, k) be the ball of profiles within distance ε of (v, k). LetM be

the space of compact-support Borel probability measures on T . An economy can be conveniently

represented by a probability measure µ on T , where µ (v, k) is the proportion of agents with utility-

priority profile (v, k) in the economy. Therefore, each of the sequence of replica economies can be

represented by the same measure. We extend our use of the Prohorov metric ρ to measure the

distance between measures on T ,

ρ (µ, ν) = inf {ε > 0|ν (E) ≤ µ (Bε (E)) + ε and µ (E) ≤ ν (Bε (E)) + ε, ∀E ⊂ T} .
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Notice that the entire set of regular economies can be partitioned into open and disjoint subsets

such that for every subset B there is a finite number m > 0 of continuous functions ψ1, ..., ψm from

B to [0,+∞]S×k̄ such that the set of transformed PM price matrices Ψ (µ) = {ψ1 (µ) , ..., ψm (µ)}
for every µ ∈ B. Indeed, consider an open ball of regular economies around each regular economy.

Non-disjoint balls must have the same set of price functions. Taking a union of open sets with the

same set of price functions gives us an open set with these price functions that is disjoint from

regular economies with other price sets.

Let us set ψ(n) (µ) = ψ (µ) = ψ1 (µ) for regular economies, and set both ψ(n) (µ) and ψ (µ) to

be an arbitrary price vector otherwise. By construction, this price function is continuous at every

regular economy.

Take the n-replica regular economy Γ(n) that is represented by µ(n)(=µ). Suppose agent i

submits a report u instead of vi, and the resulting measure on utility profiles is µ
(n)
u . By definition

of the Prohorov metric, µ
(n)
u is close to µ(n) in which everyone is truth-telling. For large enough n

we have that µ
(n)
u is in the same price-function-ball as µ(n) = µ. Since ψ(n) is continuous on each

price-function ball, agent i can affect prices by only a small amount: given every ε > 0, for every

n sufficiently large and for all ui,∣∣∣arctan
(
ψ(n)

(
ui, V

(n)
−i

))
− arctan

(
ψ(n)

(
vi, V

(n)
−i

))∣∣∣ < ε.

We therefore specify a price selection rule for PM; since agents’ utilities are continuous in prices,

Theorem 2 follows.

For completeness, we provide below a detailed analysis of the latter statement, including a

useful technical lemma.

Let P(n)
ui denote the set of PM prices when one copy of i reports ui while all others reporting

truthfully (V
(n)
−i ) in Γ(n). Therefore, P(n)

vi is the set of PM prices when everyone in Γ(n) is truth-

telling, and ∪ui∈[0,1]SP
(n)
ui is the set of prices that i can obtain through unilateral manipulation of

her reports. Furthermore, ∪ui∈[0,1]SP
(1)
ui is the set of obtainable PM prices associated with the base

economy Γ. Similar to the lemma in Roberts & Postlewaite (1976), we have the following:

Lemma B1 Given the sequence of replica economies,
{

Γ(n)
}
n∈N, and a agent i,

(i) ∪ui∈[0,1]SP
(n)
ui is closed for all n.

(ii) The sets of PM prices that i can obtain by unilateral manipulation in
{

Γ(n)
}
n∈N have a

nesting structure: ∪ui∈[0,1]SP
(n)
ui ⊆ ∪ui∈[0,1]SP

(n′)
ui for all n > n′.

(iii) If P /∈ P(1)
vi , there exists n∗ such that n > n∗ implies P /∈ P(n)

ui , and thus P(1)
vi =

∩n∈N
(
∪ui∈[0,1]SP

(n)
ui

)
.

Proof of Lemma B1. We prove the lemma step by step.

(i) ∪ui∈[0,1]SP
(n)
ui is closed.

Consider a sequence of price matrices P (m) → P̄ , where P (m) ∈ ∪ui∈[0,1]SP
(n)
ui . That is, for

each m, there is a sequence of u
(m)
i such that P (m) ∈ P(n)

u
(m)
i

. Since u
(m)
i is bounded, there must
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exist a convergent subsequence, which is also denoted as u
(m)
i → ūi. Besides, the corresponding

subsequence of price matrices, still denoted as P (m), converges to P̄ . This implies:

π(m)
(
u

(m)
i , P (m)

)
+ (n− 1)π(m)

(
vi, P

(m)
)

+ n
∑
j 6=i

π(m)
(
vj , P

(m)
)

= nQ,

where π(m)
(
ui, P

(m)
)

denotes an element in the set π
(
ui, P

(m)
)
. Due to their boundedness, there

is a subsequence of
{
π(m)

(
u

(m)
i , P (m)

)
, π(m)

(
vi, P

(m)
)}

that converges to {π̄ui , π̄vi}.
The maximum theorem implies that π (ui, P ) is upper hemicontinuous in (ui, P ), and therefore

π̄ui ∈ π
(
ūi, P̄

)
, π̄vi ∈ π

(
vi, P̄

)
, and π̄vj ∈ π

(
vj , P̄

)
. The equality above leads to:

π̄ui + (n− 1) π̄vi + n
∑
j 6=i

π(m)π̄vj = nQ,

which proves that P̄ ∈ ∪ui∈[0,1]SP
(n)
ui and hence that ∪ui∈[0,1]SP

(n)
ui is closed.

(ii) The nesting structure of ∪ui∈[0,1]SP
(n)
ui .

To simplify notations, in the following, let us assume that the demand correspondence π (ui, P )

is single-valued for all i, all ui, and all P . The proof can easily be extended to allow π (ui, P ) to

be set-valued.

P ∈ ∪ui∈[0,1]SP
(n)
ui means that there exists u

(n)
i such that P clears the market given reports(

u
(n)
i , vi

)
:

π
(
u

(n)
i , P

)
+ (n− 1)π (vi, P ) + n

∑
j 6=i

π (vj , P ) = nQ.

To have P as a PM price matrix in Γ(n′), there has to exist some u
(n′)
i ∈ [0, 1]S such that:

π
(
u

(n′)
i , P

)
+
(
n′ − 1

)
π (vi, P ) + n′

∑
j 6=i

π (vj , P ) = n′Q.

Differencing the two equations and rearranging the terms lead to:

π
(
u

(n′)
i , P

)
=
n′

n
π
(
u

(n)
i , P

)
+
n− n′

n
π (vi, P ) .

Since π
(
u

(n)
i , P

)
and π (vi, P ) are affordable to i, the convex combination of the two must be

affordable to i. Therefore, there must exist some u
(n′)
i such that the above equation is satisfied.

(iii) P(1)
vi = ∩n∈N

(
∪ui∈[0,1]SP

(n)
ui

)
It is straightforward to verify that P(1)

vi ⊆ P
(n)
vi ⊆ ∪ui∈[0,1]SP

(n)
ui for all n. We then show that

for any P /∈ P(1)
vi , there exists n∗ such that n > n∗ implies P /∈ P(n)

ui .

Suppose that P /∈ P(1)
vi but the statement in the lemma is false. The nesting structure implies

that P ∈ ∪ui∈[0,1]SP
(n)
ui , for all n. Therefore, there exists a sequence of reports by the given copy
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of agent i,
{
u

(n)
i

}
n∈N

, such that the market clears at P :

π
(
u

(n)
i , P

)
+ (n− 1)π (vi, P ) + n

∑
j 6=i

π (vj , P ) = nQ.

Rearranging the above equation yields:

π
(
u

(n)
i , P

)
− π (vi, P ) = n

Q−∑
j∈I

π (vj , P )

 ,

where the left-hand-side term is bounded due to the unit demand constraint. Moreover, P /∈ P(1)
vi

implies Q−
∑

j∈I π (vj , P ) 6= 0, which means the right-hand-side of the equation diverges when n

increases. Therefore, there must exist n̄ such that the above equation cannot be satisfied for n > n̄.

This contradiction proves the lemma.

We are now ready to finish the proof of our main incentive compatibility theorem.

Proof of Theorem 2. Suppose that for a copy of agent type i, also denoted as i, there exists a

subsequence of replica economies
{

Γ(nm)
}
nm∈N where she gains at least ε by unilateral misreporting.

Let P (m) = ψ(nm)
(
u

(nm)
i , V

(nm)
−i ;K(n)

)
where P (m) is the price matrix with which PM implements

the assignment in economy Γ(nm) after i’s unilateral manipulation. Since
{

arctan
(
P (m)

)}
nm∈N

is bounded, there is a subsequence (also denoted as
{

arctan
(
P (m)

)}
nm∈N) converging to some

arctan
(
P̄
)
. Because ∪ui∈[0,1]SP

(nm)

u
(nm)
i

and thus arctan

(
∪ui∈[0,1]SP

(nm)

u
(nm)
i

)
are closed (Lemma B1),

we have:

arctan
(
P̄
)
∈ arctan

(
∩n∈N

(
∪ui∈[0,1]SP

(nm)

u
(nm)
i

))
= arctan

(
P(1)
vi

)
,

which, together with the continuity of ψ(nm) (= ψ) as shown at the beginning of this subsection,

further implies P̄ = ψ (V,K). In other words, P̄ is the PM price matrix in Γ selected by ψ when

everyone is truth-telling.

We define the indirect utility function Wui (P ) as the expected utility (with respect to true

preferences vi) that i can obtain when reporting ui given price P . By the maximum theorem,

i’s utility maximization problem implies that Wui (P ) is continuous in P . Moreover, the utility

from manipulation, Wui

(
P (m)

)
, is always bounded above by Wvi

(
P (m)

)
, and Wvi

(
P (m)

)
goes to

Wvi

(
P̄
)

when m goes to infinite. Therefore, the (sub)sequence of Wui

(
P (m)

)
is bounded above by

the utility from truth-telling:

lim sup
m→∞

Wui

(
P (m)

)
≤ lim sup

m→∞
Wvi

(
P (m)

)
= Wvi

(
P̄
)

.

This contradiction proves that the statement in the theorem is true for a given copy of i.

To prove the statement holds true for each copy of each agent type, we note that there is a finite

number of agent types in Γ(n). There thus must exist n∗ such that n > n∗ implies that the utility

gain from unilateral misreporting for any agent is uniformly bounded by ε given that everyone else
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is truth-telling.

C Other Proofs

Proof of Proposition 1. Given an ex-ante stable assignment Π, ∀s ∈ S, all the priority groups

belong to one of the three categories:

(a) cut-off group, i.e., k∗ (s) such that
∑

j∈I, ks,j<k∗(s)

πj,s < qs,
∑

j∈I, ks,j≤k∗(s)

πj,s = qs, and∑
j∈I, ks,j>k∗(s)

πj,s = 0;

(b) groups that have higher priority than k∗ (s) at s in Π, i.e., a set Ks ⊂ K such that k ∈ Ks
iff k < k∗ (s);

(c) groups that have lower priority than k∗ (s) at s in Π, i.e., a set Ks ⊂ K such that k ∈Ks iff

k > k∗ (s).

Note that k∗ (s) always exists and is unique for all s and for any given Π, while Ks or Ks may

be empty. As long as there are at least two priority groups, Ks = ∅ implies Ks 6= ∅, and vice

versa.

(i) We first show that every Π in ΠStable
Γ is ex-ante stable.

If P ∈ PStableΓ , then

pi,s =


0

∈ [0,+∞]

+∞

if ks,i ∈ Ks
if ks,i = k∗ (s)

if ks,i ∈ Ks

Fix Π ∈ ΠΓ (P ) for some P ∈ PStableΓ . ∀i, j ∈ I, ∀s, s′ ∈ S such that vi,s > vi,s′ and ks,i < ks,j , if

πj,s > 0, we must have πi,s′ = 0 since pi,s = 0 according to the definition of PStableΓ . Equivalently,

πi,s′ > 0 is not optimal for i facing (pi,1, · · · , pi,S), which proves every Π in ΠStable
Γ is ex ante stable.

Proof of Theorem 3. By Proposition 1 as well as Corollary 1, PM assignments are ex-ante stable.

Moreover, by the definition of equal claim among ex-ante stable assignment, PM assignments also

satisfy equal claim.

For any given assignment that satisfies ex-ante stability and equal claim, Proposition 1 and the

definition of equal claim imply that the assignment can be rationalized by prices that satisfy the

PM construction. Therefore, the assignment is a PM assignment.

Proof of Theorem 4. Given a stable matching, for each object s, we may find k∗ (s) =

maxi∈{j∈S|j is matched with s} {ks,i}, which is the lowest priority group of s among those who are

matched with s. We may then define the following price system:

ps,ks,i =

{
0, if ks,i ≤ k∗ (s)

+∞, if ks,i > k∗ (s)
, ∀s.

This price system satisfies the requirement of the PM mechanism. We need to show that agents
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maximize their expected utility given the prices.

The only possible deviation for an agent i is to choose some object s which is free to her. That

is, she is in a higher priority group of s than someone who is already accepted by s. If this deviation

is profitable to i, (i, s) forms a blocking pair (or i has justified envy at s). By the definition of

stability, there is no such pair. This proves that every stable matching is an PM assignment.

Similarly, for any PM assignment, there exists a corresponding price matrix that guarantees

that prices are either zero or infinite, which implies that the assignment is deterministic. For

deterministic assignments, ex-ante stability is equivalent to stability, and Theorem 3 implies that

PM assignments in this case are stable.

Proof of Proposition 2. Let P ∗ be a PM price matrix.

Suppose that si,1 is the non-free object (according to her own price) on which agent i spends

her budget, and that si,2 is her most preferred object among all free ones. By assumption, 1 <

p∗si,1,ksi,1,i
< +∞. Since each agent has strict preferences over objects, si,2 is unique and vi,si,1 >

vi,si,2 . By assumption, if i’s consumption includes a positive probability share of si,2, si,2 must be

free to everyone. i’s assignment
{
π∗i,s

}
s∈S

must be such that:

π∗i,si,1 = 1/p∗si,1,ksi,1,i
, π∗i,si,2 = 1− π∗i,si,1 , and π∗i,s = 0, ∀s 6= si,1, 6= si,2;

Alternatively, if i does not spend any budget on any non-free objects,

π∗i,s′i,2
= 1, and π∗i,s = 0 ∀s 6= s′i,2.

Note that such s′i,2 may or may not be free to every agent.

Consider that agent i’s submitted rank-order list in BM is L∗i = (si,1, si,2) if i spends some of

her budget or L∗i =
(
s′i,2

)
if she does not spend any budget at all. It can be verified that given

these rank-order lists, BM clears the market in two rounds and delivers the same assignment as the

PM mechanism. The only thing left to check is that this is a Nash equilibrium.

(i) If L∗i =
(
s′i,2

)
, suppose there exists s′ s.t. vi,s′ > vi,s′i,2 . If not, there is no profitable

deviation for i, as she is matched with her most preferred object already. If i ranks s′ above s′i,2,

she cannot be matched with s′, because all those top ranking s′ must be in a higher priority group

of s′. Otherwise, s′ would cost i a finite amount, which would allow her to purchase some shares

in s′ under the PM mechanism. Certainly, ranking s′ below s′i,2 does not change the assignment.

Similarly, i cannot benefit by ranking objects less preferable than s′i,2 in her list.

(ii) Now suppose L∗i = (si,1, si,2) and L′i is a profitable deviation for i. Given the assumptions,

we have the following results:

(a) Object si,1 is not available after the first round of BM;

(b) i may obtain a positive share of s′ by ranking it first if in PM ps′,ks′,i < +∞ (i.e., i’s priority

at object s′ is at least as high as the cut-off group).
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(c) Only objects available in the second round and rounds later are those ranked as second

choice by some agents. In other words, they are those who have zero prices for everyone in the PM

mechanism.

Therefore, if L′i still has si,1 as her first choice, it cannot be profitable, because she can get

1/p∗si,1,ksi,1,i
of si,1 and at best 1− 1/p∗si,1,ksi,1,i

shares of si,2.

If L′i has s′ (s′ 6= si,1) as her first choice, to be profitable, vi,s′ > vi,si,2 and s′ cannot be of zero

price or infinite price to i in PM. If s′ is of zero price to i, i could have obtained s′ instead of si,2 in

PM; if s′ is of infinite price to i, i could never obtain any shares of s′. i thus must be in the cut-off

priority group of s′. Given L∗−i and the rules of BM, by ranking s′ as first choice, i can obtain:

π′i,s′ =
qs′ −

∑
j∈{j∈I:ks′,j<ks′,i} π

∗
j,s′

p∗s′,ks′,i

(
qs′ −

∑
j∈{j∈I:ks′,j<ks′,i} π

∗
j,s′

)
+ 1

,

where qs′−
∑

j∈{j∈I:ks′,j<ks′,i} π
∗
j,s′ is the remaining quota at s′ after those who are in higher priority

groups claim their shares; and p∗s′,ks′,i

(
qs′ −

∑
j∈{j∈I:ks′,j<ks′,i} π

∗
j,s′

)
is the total expenditure on

s′ by agents who are in the same priority group of s′ as i; and more importantly it is the total

number of such agents other than i who have ranked s′ as first choice given L∗−i. This is because

everyone spends her budget on at most one object and p∗s′,ks′,i
> 1 by assumption. This lead to

p∗s′,ks′,i
π′i,s′ < 1, which implies that π′i,s′ is affordable to i in PM.

Moreover, given L∗−i and any L′i, besides the first-choice object (s′), i can only obtain some

shares in objects that are free to everyone in the PM. Therefore, the assignment resulting from a

potentially deviation is still affordable to i in PM, which implies that it cannot be profitable.

This complete the proof that
(
L∗i , L

∗
−i
)

is a Bayesian Nash equilibrium in BM.

(ii) We show that if Π ∈ A is ex-ante stable, then ∃P ∗ ∈ PStableΓ such that Π ∈ ΠΓ (P ∗). It

suffices to show that ∀i ∈ I, [πi,s]s∈S is the optimal choice facing
[
p∗i,s

]
s∈S

and
[
p∗i,s

]
s∈S

is in

PStableΓ .

Given Π, we can still define three sets of priorities, Ks, {k∗ (s)}, and Ks. Across agents, the

only restriction on prices in PStableΓ is that prices for agents with priorities in Ks∪Ks and not in

cut-off groups must be the same (either zero or infinite). An immediate finding is that ∀ks,i ∈Ks,
we can set p∗i,s = +∞ since πi,s = 0 for all such i and s, which satisfies the property of PStableΓ .

Given Π, we can further group the objects into three distinct sets for agent i, S =Si ∪ Sci ∪ Si:

Si = {s ∈ S|ks,i ∈ Ks} ;Sci = {s ∈ S|ks,i = k∗ (s)} ;Si =
{
s ∈ S|ks,i ∈ Ks

}
.

Also note that ∀i ∈ I, S\Si 6= ∅, and we consider the following possibilities:

(a) Sci = ∅: The ex-ante stability implies that i is matched with her most-preferred object

within S\Si = Si with probability 1, thus p∗i,s = 0 ∀s ∈ S\Si = Si supports this assignment as a

utility-maximization outcome and satisfies the properties of PStableΓ .

(b) Si = ∅: This implies that S\Si = Sci . By adjusting the prices of objects in Sci , one can
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make [πi,s]s∈S an optimal choice of i. This is feasible because there are no restrictions on prices of

objects in Sci .
(c) Sci 6= ∅ and Si 6= ∅: We denote the most-preferred object within Si for i as si, then the

ex-ante stability implies that ∀s ∈ S\Si, πi,s = 0 if vi,si > vi,s. Let us set p∗i,s = 0 for ∀s ∈ Si,
which satisfies the properties of PStableΓ .

Denote Sci (si) ≡ {s ∈ Sci |vi,s ≥ vi,si }. If πi,si = 0, i must only consume objects in Sci (si).

Given zero prices for all objects in Si and infinite prices for objects in Si, one can find a vector of

personalized prices for all objects in Sci (si) to make [πi,s]s∈S i’s optimal choice. Note that this can

be done independently for all agents. If instead πi,si > 0, it implies that i only consumes objects in

{si} ∪ Sci . Similarly, one can find a price vector for objects in Sci (si) to make [πi,s]s∈S i’s optimal

choice.

This proves that there always exists a price matrix P ∗ ∈ PStableΓ such that each
[
p∗i,s

]
s∈S

supports [πi,s]s∈S if Π is ex ante stable.

Proof of Theorem 5. We define the following rules regarding infinity:

0 ∗+∞ = 0; +∞ ≥ +∞.

Suppose a PM assignment,
[
π∗i,s

]
i∈I,s∈S

, is ex-ante Pareto dominated by another assignment

[πi,s]i∈I,s∈S , i.e.,

∑
s∈S

πi,svi,s ≥
∑
s∈S

π∗i,svi,s, ∀i ∈ I, (1)∑
i∈{ks,i≤k}

πi,s ≥
∑

i∈{ks,i≤k}

π∗i,s, ∀s ∈ S, ∀k ∈ K, (2)

and at least one inequality is strict.

For any agent whose most preferred object is free or has the associated price no more than

one, she obtains that object for sure, and there is no other assignment that makes her better

off. If for agent i,
∑

s∈S πi,svi,s >
∑

s∈S π
∗
i,svi,s, it must be such that

∑
s∈S ps,ks,iπi,s > 1 and∑

s∈S π
∗
i,sps,ks,i = 1. Otherwise

[
π∗i,s

]
s∈S

would not be optimal for i.

Moreover, for agents other than i who do not obtain their most preferred objects, it must be

that
∑

s∈S ps,ks,jπj,s ≥
∑

s∈S ps,kj,sπ
∗
j,s, since

[
π∗j,s

]
s∈S

is the cheapest among bundles delivering

the same expected utility. Therefore,∑
s∈S

ps,ks,iπi,s +
∑
j 6=i

∑
s∈S

ps,ks,jπj,s >
∑
s∈S

ps,ks,iπ
∗
i,s +

∑
j 6=i

∑
s∈S

ps,ks,jπ
∗
j,s.

However, because prices are higher for agents in lower priority groups, equation (2) implies that:∑
j∈I

∑
s∈S

ps,ks,jπj,s ≤
∑
j∈I

∑
s∈S

ps,ks,jπ
∗
j,s,
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which leads to a contradiction.

Suppose instead that for object s, equation (2) is satisfied for all k, and ∃k ∈
{

1, ..., k − 1
}

,

such that ∑
i∈{ks,i≤k}

πi,s >
∑

i∈{ks,i≤k}

π∗i,s.

This implies, ∑
j∈I

ps,ks,jπj,s <
∑
j∈I

ps,ks,jπ
∗
j,s,

again because prices are higher for agents in lower priority group. Aggregating over all objects,∑
j∈I

∑
s∈S

ps,ks,jπj,s <
∑
j∈I

∑
s∈S

ps,ks,jπ
∗
j,s.

However, based on the same arguments as above, equation (1) implies that
∑

s∈S ps,ks,jπj,s ≥∑
s∈S ps,ks,jπ

∗
j,s, ∀j ∈ I, and thus,∑

j∈I

∑
s∈S

ps,ks,jπj,s ≥
∑
j∈I

∑
s∈S

ps,ks,jπ
∗
j,s.

This leads to another contradiction.

Therefore,
[
π∗i,s

]
i∈I,s∈S

, must be two-sided ex-ante efficient.

C Other Incentive Compatibility Concepts for Large

Markets

A SP-L of the Equal-Budget PM Mechanism

We now show that the PM mechanism giving equal budgets to agents of the same priority type

satisfy Azevedo and Budish’s SP-L (strategy-proof-in-the-large) property provided the domain of

agents’ types is finite. Let T be a finite domain of agents’ vNM utility profiles, ∆T be the set of

full-support lotteries over T . Random mechanisms φn are defined on cartesian products over T .

Proposition C1 Assume that the number of agents in every priority profile grows to infinity along

a sequence of economies (En)n∈N. The sequence of PM mechanisms (φn)n∈N on (En)n∈N that give

equal budgets to agents of the same priority type is SP-L that is for any ε > 0 and any m ∈ ∆T ,

there exists n0 such that for all n ≥ n0 and all t, t′ ∈ T we have∑
t−i∈Tn−1

ut (φn (t, t−i))m (t−i) ≥
∑

t−i∈Tn−1

ut
(
φn
(
t′, t−i

))
m (t−i)− ε.

Proof. Fix any m ∈ ∆T and a priority profile π. Let Iπ be the set of agents of priority profile

π; let us define for these agents the random mechanism φ̃n that takes as arguments the profile of
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preferences of agents in Iπ and assigns them the lottery over φ (tIπ , t−Iπ) where the preferences of

agents of priority profiles different from π are drawn according to m. Since φ is envy free among

Iπ, hence so is φ̃. Thus, Proposition 1 of Azevedo and Budish (2013) implies that φ̃ is SP-L, and

hence we can conclude that φ is SP-L.

B Limiting Individual Incentive Compatibility

This appendix proves that the PM mechanism satisfies the concept of limiting individual incentive

compatibility as in Roberts & Postlewaite (1976).

Definition C1 Let
{

Γ(n)
}
n∈N be a sequence of economies and let i be an agent in each Γ(n). A

mechanism is limiting individually incentive compatible for i in
{

Γ(n)
}
n∈N if for any ε there exists

n∗ such that n > n∗ implies that for each πi attainable by i in Γ(n) there exists a competitive

assignment π∗i to i in Γ(n) (everyone is truth-telling) such that
∑

s∈S π
∗
i,svi,s >

∑
s∈S πi,svi,s − ε.

Therefore, this concept focuses on the incentive for an individual agent to misreport while

everyone else is truth-telling. In particular, it does not require a price selection rule, because only

the existence of such a truth-telling equilibrium is required. The following shows that the PM

mechanism satisfies this property in a sequence of economies.

B.1 Sequence of Economies

We first define per capita demand functions and take into account that agents in different priority

groups face different prices, and thus the per capita demand is priority-specific. Let Fi (P ) be the

augmented set of feasible consumption bundles for agent i,

Fi (P ) ≡



{
πi = [πi,s]s∈S

∣∣∣∣∣ πi,s ≥ 0, ∀s,
∑

s∈S πi,s = 1,

and
∑

s∈S πi,sps,ks,i ≤ 1

}
, if ps,ks,i ≤ 1 for some s;πi = [πi,s]s∈S

∣∣∣∣∣∣
πi,s ≥ 0, ∀s,

∑
s∈S πi,s = 1

mint=1,...,S

{
pt,kt,i

} ,

and
∑

s∈S πi,sps,ks,i ≤ 1

 , if ps,ks,i > 1, ∀s.

When there are no affordable bundles such that
∑

s∈S πi,s = 1, the second part of the definition

assumes that every agent is allowed to spend all their money on the cheapest objects. Fi (P ) is

then non-empty, closed, and bounded.32

Let Ui =
∑

s∈S πi,svi,s be i’s expected utility function. Define Gi (P, vi) as the set of bundles

that i would choose from Fi (P ) to maximize Ui. Formally,

Gi (P, vi) =

{
πi ∈ Fi (P )

∣∣∣∣∣ ∀π′i ∈ Fi (P ) , Ui (πi) > Ui (π′i) ,

or Ui (πi) ≥ Ui (π′i) and
∑

s∈S πi,sps ≤
∑

s∈S π
′
i,sps

}
.

32It is important to note that P cannot be an equilibrium whenever the second part of Fi (P )’s definition
is invoked.
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Since Gi (P, vi) is obtained from the closed, bounded, and non-empty set Fi (P ) by maximizing

(and minimizing) continuous functions, Gi (P, vi) must be non-empty. Gi (P, vi) is a convex set,

because Ui (πi) and
∑

s∈S πi,sps,ks,i are linear functions of πi. Define G (P, v) as the set of per

capita demand for each priority group for each object that can emerge when prices equal P and

each agent i chooses a vector in Gi (P, vi), that is, ∀P ∈ P:

G (P, V ) =

{
D = [ds,k]s∈S,k∈K

∣∣∣∣∣ ds,k = 1
|I|
∑
{i∈I|ks,i=k} πi,s, ∀s,∀k

[πi,s]s∈S ∈ Gi (P, vi)

}
.

It can be verified that G (P, V ) is also closed, bounded, and upper hemicontinuous.

The following definition is needed to define the sequence of economies.

Definition C2 A sequence of correspondences f (n) (P ) uniformly converge to f (P ) if and only if,

for any ε > 0, there exists N ∈ N, such that when n ≥ N ,

sup
P
dH

(
f (n) (P ) , f (P )

)
≤ ε,

where dH is Hausdorff distance, i.e.,

dH

(
f (n) (P ) , f (P )

)
= max

{
supY ∈f(P ) infY (n)∈f (n)(P )

∥∥Y (n) − Y
∥∥ ,

supY (n)∈f (n)(P ) infY ∈f(P )

∥∥Y (n) − Y
∥∥
}
,

where ‖·‖ is the Euclidean distance.

Let
{

Γ(n)
}
n∈N be a sequence of economies where Γ(n) =

{
S, I(n), Q(n), V (n),K(n)

}
and ∀n ∈ N:

(i) I(n) ⊂ I(n′) and q
(n)
s < q

(n′)
s for all s if n < n′;

∣∣I(n)
∣∣ =

∑
s∈S q

(n)
s ; and q

(n)
s /

∣∣I(n)
∣∣ = qs/I;

(ii) K(n) is such that the associated priority groups satisfy
∣∣{i ∈ I(n)|ks,i = k

}∣∣ / ∣∣I(n)
∣∣ = Cs,k,

for all k and s, where Cs,k is a constant.

(iii) the number of objects, S = |S|, is constant;

(iv) the corresponding per capita demand G(n)
(
P, V

(n)
−i

)
→ g (P ) uniformly as n→∞.

Remark C1 Analogous to the regularity imposed in the main text, the above restrictions on the

sequence of economies can also be interpreted as regular conditions.

Remark C2 g (P ) is a convex-valued, closed, bounded, and upper hemicontinuous correspondence,

since G(n)
(
P, V (n)

)
has these properties. This definition includes two special cases: (i) a sequence

of replica economies where G(n)
(
P, V (n)

)
= g (P ), for all n ∈ N; and (ii) a sequence of economies

in which agents’ preference-priority profiles are i.i.d. drawn from a joint distribution of preferences

and priorities, while holding constant the relative size of each priority group at each object.
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B.2 Results and Proofs

We first present a result on the set of PM prices and then another on the limiting incentive com-

patibility.

Lemma C2 In the sequence of economies
{

Γ(n)
}
n∈N, let P(n)

ui ⊂ [0,+∞]S×k be the set of PM

prices given
(
ui, V

(n)
−i

)
. Then limn→∞ dH

(
P(n)
vi ,P

(n)
ui

)
= 0, ∀ui ∈ [0, 1]S, for any i in all I(n).

Proof. This is proven by the following three steps.

(1) Misreporting cannot affect per capita demand by priority groups in the limit.

First, recall that per capita demand of each priority group at each object is G (P, v) for P ∈
[0,+∞]S×k ≡ P and v is the tuple of all agents’ preferences.

Since each agent can increase or decrease the total demand of a priority group of an object

at most by one copy, ∀ [ds,k]s∈S,k∈K ∈ G(n)
(
P,
(
ui, V

(n)
−i

))
, there must exist

[
d′s,k

]
s∈S,k∈K

∈

G(n)
(
P,
(
vi, V

(n)
−i

))
, such that, ∀s, ∀k,

d′s,k −
1∣∣I(n)
∣∣ ≤ ds,k ≤ d′s,k +

1∣∣I(n)
∣∣ .

Similarly, ∀
[
d′s,k

]
s∈S,k∈K

∈ G(n)
(
P,
(
vi, V

(n)
−i

))
, there exists [ds,k]s∈S,k∈K ∈ G

(n)
(
P,
(
ui, V

(n)
−i

))
,

such that ∀s, ∀k,

ds,k −
1∣∣I(n)
∣∣ ≤ d′s,k ≤ ds,k +

1∣∣I(n)
∣∣ .

Therefore, given any P ,

sup
ui∈[0,1]S

dH

(
G(n)

(
P,
(
ui, V

(n)
−i

))
, G(n)

(
P,
(
vi, V

(n)
−i

)))
≤
√
Sk∣∣I(n)
∣∣ ,

which implies that, given any P ,

lim
n→∞

sup
ui∈[0,1]S

dH

(
G(n)

(
P,
(
ui, V

(n)
−i

))
, G(n)

(
P,
(
vi, V

(n)
−i

)))
= 0. (3)

By definition, G(n)
(
P,
(
vi, V

(n)
−i

))
→ g (P ) uniformly. Therefore, Equation (3) implies that

G(n)
(
P,
(
ui, V

(n)
−i

))
converges to g (P ) uniformly as n→∞.

(2) Price Adjustment Process

Similar to the proof for Theorem 1, define Z ≡ [zs,k]s∈S,k∈K ∈ [0, π/2]S×k ≡ Z, where zs,k =

arctan (ps,k), ∀s, ∀k.
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A price adjustment process for Γ(n) is defined as,

H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
≡

Y = [ys,k]s∈S,k∈K

∣∣∣∣∣∣ ys,k
(
[ds,k]k∈K

)
= min

{
π/2,max

[
0, zs,k +

(∑k
κ=1 ds,κ − qs/I

)]}
∀ [ds,k]s∈S,k∈K ∈ G

(n)
(
T AN (Z) ,

(
vi, V

(n)
−i

))  ,

where, T AN (Z) ≡ [tan (zs,k)]s∈S,k∈K. It is straightforward to verify that the correspondence H is

a mapping from Z to Z, given
(
vi, V

(n)
−i

)
. Similarly,

H [Z, g (T AN (Z))]

≡

 Y = [ys,k]s∈S,k∈K

∣∣∣∣∣∣ ys,k
(
[ds,k]k∈K

)
= min

{
π/2,max

[
0, zs,k +

(∑k
κ=1 ds,κ − qs/I

)]}
∀ [ds,k]s∈S,k∈K ∈ g (T AN (Z)) ;

 .

Claim: H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
→ H [Z, g (T AN (Z))] uniformly as n→∞.

The uniform convergence of G(n)
(
P,
(
vi, V

(n)
−i

))
to g (P ) means that ∀ε > 0, ∃N ∈ N, such

that when n > N , ∀P ∈ P, i.e., ∀Z ∈ Z,

sup[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)
(
P,
(
vi,V

(n)
−i

)) inf
[ds,k]s∈S,k∈K∈g(P )

∥∥∥∥[d(n)
s,k − ds,k

]
s∈S,k∈K

∥∥∥∥ ≤ ε, and

sup
[ds,k]s∈S,k∈K∈g(P )

inf[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)
(
P,
(
vi,V

(n)
−i

))
∥∥∥∥[d(n)

s,k − ds,k
]
s∈S,k∈K

∥∥∥∥ ≤ ε.

By the definition of the Euclidean distance, the first inequality implies that,

sup[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)

inf
[ds,k]s∈S,k∈K∈g(P )

∥∥∥∥∥∥
 min

{
π
2 ,max

[
0, arctan (ps,k) +

(∑k
κ=1 d

(n)
s,κ − qs

I

)]}
−min

{
π
2 ,max

[
0, arctan (ps,k) +

(∑k
κ=1 ds,κ −

qs
I

)]} 
s∈S,k∈K

∥∥∥∥∥∥
≤ ε.

Or, equivalently,

sup
Y (n)∈H

[
Z,G(n)

(
T AN (Z),

(
vi,V

(n)
−i

))] inf
Y ∈H[Z,g(T AN (Z))]

∥∥∥Y (n) − Y
∥∥∥ ≤ ε. (4)

Similarly, we have,

sup
Y ∈H[Z,g(T AN (Z))]

inf
Y (n)∈H

[
Z,G(n)

(
T AN (Z),

(
vi,V

(n)
−i

))]∥∥∥Y (n) − Y
∥∥∥ ≤ ε. (5)
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Since (4) and (5) are satisfied for all n > N and ∀Z ∈ Z, H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
converges to H [Z, g (T AN (Z))] uniformly.

From the proof for Theorem 1, H
[
Z,G(n)

]
is upper hemicontinuous and convex-valued and

thus satisfies all the conditions of Kakutani’s fixed-point theorem.

Claim: Given
(
vi, V

(n)
−i

)
and any PM price matrix P ∈ P, its positive monotonic transforma-

tion Z ∈ Z is a fixed point of H
[
Z,G(n)

(
T AN (Z) ,

(
vi, V

(n)
−i

))]
.

If P ∗ is a PM price matrix, there must exist a unique k∗ (s) ∈ K for each s such that, for some

[ds,k]s∈S,k∈K ∈ G
(n)
(
P ∗,

(
vi, V

(n)
−i

))
,

(i) p∗s,k∗(s) ∈ [0,+∞) and
∑k∗(s)

κ=1 ds,κ = qs
I ,

(ii)
∑k

κ=1 ds,κ <
qs
I and p∗s,k = 0 if k < k∗ (s), and

(iii) ds,k = 0 and p∗s,k = +∞ if k > k∗ (s).

Let P ∗ = T AN (Z∗), given the same [ds,k]s∈S,k∈K, we must have

min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
= 0 = z∗s,k, if k < k∗ (s) ;

min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
= z∗s,k, if k = k∗ (s) ;

min

{
π

2
,max

[
0, z∗s,k +

(
k∑

κ=1

ds,κ −
qs
I

)]}
=

π

2
= z∗s,k, if k > k∗ (s) .

Therefore, Z∗ ∈ H
[
Z∗, G(n)

(
T AN (Z∗) ,

(
vi, V

(n)
−i

))]
.

Note that not every fixed point of H is a PM price matrix as the proof for Theorem 1 has

discussed, while the transformation of any PM price matrix is a fixed point.

Similarly, when agent i reports ui, H
[
Z,G(n)

(
T AN (Z) ,

(
ui, V

(n)
−i

))]
has the same proper-

ties and converges to H [Z, g (T AN (Z))] uniformly, since G(n)
(
P,
(
ui, V

(n)
−i

))
converges to g (P )

uniformly. In the same manner, the transformations of all the PM prices can be found as a fixed

point of H
[
Z,G(n)

(
T AN (Z) ,

(
ui, V

(n)
−i

))]
.

Denote P(∞)
vi as the set of PM prices corresponding to the subset of fixed points ofH [Z, g (T AN (Z))]

which all have PM price properties (i.e., the structure of priority-specific prices).

(3) Asymptotic Equivalence of P(∞)
vi and P(n)

ui .

As a Walrasian equilibrium required by the PM mechanism, some prices may be +∞ for some

46



s and k. We supplement the definition of Euclidean distance by defining the following for +∞:33

|(+∞)− (+∞)| = 0;
√

+∞ = +∞; (+∞)2 = +∞;

|(+∞)− x| = |x− (+∞)| = +∞, ∀x ∈ [0,+∞) ;

and (+∞) + x = +∞, ∀x ∈ [0,+∞] .

For any P̂ (n) ∈ P(n)
ui , by definition, ∃

[
d

(n)
s,k

]
s∈S,k∈K

∈ G(n)
(
P̂ (n),

(
ui, V

(n)
−i

))
, such that qs/I =∑k

κ=1 d
(n)
s,κ , ∀s. Since G(n)

(
P,
(
ui, V

(n)
−i

))
→ g (P ) uniformly as n→∞,

lim
n→∞

inf
[ds,k]s∈S,k∈K∈g(P̂

(n))

∥∥∥∥∥∥[qs/I]s∈S −

 k∑
κ=1

ds,κ


s∈S

∥∥∥∥∥∥ = 0,

which implies that Z = T AN−1
(
P̂ (n)

)
has to be a fixed point of H [Z, g (T AN (Z))] in the limit.

Therefore for some P ∗ ∈ P(∞)
vi ,

lim
n→∞

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0,

which means that, more precisely,

(i) when n is large enough, there is [k∗ (s)]s∈S ∈ KS such that ∀s, 0 ≤ p∗s,k∗(s), p̂
(n)
s,k∗(s) < +∞;

p∗s,k = p̂
(n)
s,k = 0 if k < k∗s ; p

∗
s,k = p̂

(n)
s,k = +∞ if k > k∗s ;

(ii) limn→∞

∥∥∥[p∗s,k∗(s)]s∈S − [p̂(n)
s,k∗(s)

]
s∈S

∥∥∥ = 0.

Since this is true ∀P̂ (n) ∈ P(n)
ui ,

lim
n→∞

sup
P̂ (n)∈P(n)

ui

inf
P ∗∈P(∞)

vi

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0. (6)

On the other hand, for any P ∗ ∈ P(∞)
vi , by definition, ∃ [ds,k]s∈S,k∈K ∈ g (P ∗), such that

qs/I =
∑k

κ=1 ds,κ, ∀s. Since G(n)
(
P,
(
ui, V

(n)
−i

))
converges to g (P ) uniformly,

lim
n→∞

inf[
d

(n)
s,k

]
s∈S,k∈K

∈G(n)
(
P ∗,
(
ui,V

(n)
−i

))
∥∥∥∥∥∥[qs/I]s∈S −

 k∑
κ=1

d(n)
s,κ


s∈S

∥∥∥∥∥∥ = 0,

which implies that P ∗ is an asymptotic PM price matrix for
(
ui, V

(n)
−i

)
, i.e.,

lim
n→∞

inf
P̂ (n)∈P(n)

ui

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0.

33ps,k = +∞ means that there is no supply for the preference group k at school s. It therefore makes
sense to define the distance between +∞ and +∞ as 0.
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Thus the above two properties (i) and (ii) are satisfied. Since this is true for all P ∗ ∈ P(∞)
vi , therefore

lim
n→∞

sup
P ∗∈P(∞)

vi

inf
P̂ (n)∈P(n)

ui

∥∥∥P ∗ − P̂ (n)
∥∥∥ = 0. (7)

Combining (6) and (7), we have limn→∞ dH

(
P(∞)
vi ,P(n)

ui

)
= 0, ∀ui ∈ [0, 1]S and for any i in all

I(n).

Furthermore, limn→∞ dH

(
P(∞)
vi ,P(n)

vi

)
= 0 and, therefore, limn→∞ dH

(
P(n)
vi ,P

(n)
ui

)
= 0, ∀ui ∈

[0, 1]S and for any i in all I(n).

Proposition C2 Suppose i is in every economy of the sequence
{

Γ(n)
}
n∈N. The PM mechanism

is limiting individually incentive compatible for i.

Proof. By Lemma C2, for any ξ > 0, there exists n∗ such that for n > n∗ and for every price in

Pui ∈ P
(n)
ui there exists a price Pvi ∈ P

(n)
vi such that |Pvi − Pui | < ξ.

We define the indirect utility function Wui (P ) as the expected utility (with respect to true

preferences vi) that i can obtain when reporting ui given price P . By the maximum theorem, i’s

utility maximization problem implies that Wui (P ) is continuous in P . Moreover, the utility from

manipulation, Wui (P ), is always bounded above by Wvi (P ). Therefore, Wui (Pui) ≤Wvi (Pui).

When ξ is set small enough, the continuity of Wvi (.) implies that we can find Pvi ∈ P
(n)
vi in all

large enough economies (n > n∗) such that:

|Wvi (Pui)−Wvi (Pvi)| < ε.

Therefore,

Wui (Pui) ≤Wvi (Pui) < Wvi (Pvi) + ε.

Or equivalently,

Wvi (Pvi) > Wui (Pui)− ε,

which proves that the PM mechanism is limiting individually incentive compatible for i.

D An Extension to Multi-Unit Demand

Our PM mechanism can be naturally extended to multi-unit allocations with priorities, such as

course allocation in colleges in which students i ∈ I are given priority for courses s ∈ S. Students’

have cardinal utility over course bundles which are additive in their utility of individual courses,

denoted ui = (ui,1, ..., ui,S) ∈ RS .34 An individual course assignment for agent i is a vector πi =

(πi,1, ..., πi,S) such that
∑S

s=1 πi,s = C, where C ≥ 0 is the maximum number of courses an agent

might take. The utility from a probabilistic bundle πi is the scalar product uiπi. We may allow

34In introducing additivity, we follow Budish et al. (2013); in their setup there are no priorities and PM
prices and assignment exist.
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dummy courses with guaranteed excess supply to accommodate the possibility that an agent takes

less than C real courses.

We define the multi-unit PM mechanism as in the unit-demand setting. In particular, for each

course s, a cut-off priority group k∗(s) would face the market price p∗s ∈ [0,∞). Higher priority

groups would face zero price and lower priority groups would face infinite price. The existence of

multi-unit PM assignment is now obtained in the same way as in the the unit-demand allocation

problem.

As before, an assignment is ex-ante stable if it does not cause ex-ante justified envy. An

assignment Π causes ex-ante justified envy of i ∈ I toward j ∈ I\ {i} if ∃s, s′ ∈ S such that

vi,s > vi,s′ , ks,i < ks,j , πj,s > 0, and πi,s′ > 0. That is, agent i who has higher-priority at s

than another agent j has ex-ante justified envy towards j if j has positive probability of obtaining

object s, while with positive probability i obtains an object less preferable than s. As before, if an

assignment causes ex-ante justified envy, then its every implementation with positive probability

generates deterministic assignments that are not justified-envy-free, or not stable, in the sense of

Abdulkadiroglu & Sonmez (2003).

In multi-unit demand settings, our PM mechanism remains ex-ante stable. Indeed, if j has

positive probability of course s then agent i who has higher priority than j at s would face zero

price for course s.

Furthermore, we can also easily accommodate the natural constraint that each agent can con-

sume at most one unit of any given course. Given such a constraint, an assignment Π causes

ex-ante justified envy of i ∈ I toward j ∈ I\ {i} if ∃s, s′ ∈ S such that vi,s > vi,s′ , ks,i < ks,j ,

πj,s > 0, πi,s′ > 0, and πi,s = 0. That is, agent i who has higher-priority at s than another agent j

has ex-ante justified envy towards j if j has positive probability of obtaining object s, while i has

probability zero of s and strictly higher probability of an object worse than s.35 An assignment

is ex-ante stable if it does not cause ex-ante justified envy. Our PM mechanism remains ex-ante

stable also in this environment.

35We are adding the restriction that πi,s = 0 because of the constraint that each agent can consume at
most one unit of any given course. Consider, for instance, agents who—under this constraint—pick two
courses from among two courses, s1 and s2, each of which has at least two units. Suppose agent i has
priority at s1 over other agents and that i strictly prefers s1 over s2. Feasibility then implies that i obtains
at most one unit of s1. Under the unconstrained version of the stability definition, no agent other than i
could obtain positive probability of s1, which is not a reasonable restriction. The above definition resolves
this issue.
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