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Abstract

We construct quantile stable mechanisms, show that they are distinct in

su�ciently large markets, and analyze how they can be manipulated by mar-

ket participants. As a step to showing that quantile stable mechanisms are well

defined, we show that median and quantile stable matchings exist when con-

tracts are strong substitutes and satisfy the law of aggregate demand. This last

result is of independent interest as experiments show that agents who match

in a decentralized way tend to coordinate on the median stable matching when

it exists.

1 Introduction

We consider a general matching model: there are two sides, such as firms and workers.

Each agent can sign a set of contracts with agents on the other side of the market,

and each agent has strict preferences over sets of contracts. Each contract specifies a

firm, a worker, and the terms of matching between these two agents; they can involve
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Pathak, and Peng Wang. Yenmez gratefully acknowledges financial support from National Science
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many components such as wages, benefits, etc.1 The prominent solution concept in

such matching markets is stability. If a matching is stable, then each agent is willing

to keep all of her contracts and there are no additional contracts that agents would

like to sign, possibly by dropping some of their current contracts.2

For this market, we construct quantile stable mechanisms and study their ma-

nipulability properties à la Pathak and Sönmez (2013). As an important step in

our construction of quantile stable mechanisms we resolve the question: when do

median stable matchings, and more generally, quantile stable matchings exist? This

question is of independent interest because of the role of median stable matchings in

decentralized matching.

Experiments show that agents who match in a decentralized way tend to coordi-

nate on a particular stable matching, the median stable matching, when it exists, see

Echenique and Yariv (2013).3 The experimental evidence raises the question of when

the median stable matching exists. Our Theorems 1 and 2 address this question, as

well as a more general question of the existence of quantile stable matchings that are

second best, third best, etc. for agents on the same side of the market. In particular,

if there is an odd number k of stable matchings then the median stable matching is

the k+1
2 -th best stable matching for all agents on the chosen side.

The existence results play an auxiliary role in our construction of the quantile

stable mechanisms. Two of these mechanisms are well known and often used: the

extremal matching mechanisms that assign the best stable outcome for one side and

the worst for the other. Extremal mechanisms have been implemented, for instance,

in the National Resident Matching Program (NRMP) to match medical doctors to

residency programs and in some school districts to match students to high schools

1Matching markets with contracts were first studied by Roth (1984c) and Hatfield and Milgrom
(2005).

2 Stable matchings exist when contracts are substitutes (Roth, 1984c; Fleiner, 2003; Hatfield and
Milgrom, 2005; Klaus and Walzl, 2009; Hatfield and Kominers, 2012). Contracts are substitutes
when a contract that is chosen from a larger set is also chosen from a smaller set including that
contract.

3Echenique and Yariv (2013) show that the median stable matching is selected most frequently
by the subjects and that the cardinal representation of ordinal preferences also impacts which stable
matching gets selected.
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(Roth, 1984a; Abdulkadiroğlu and Sönmez, 2003). As far as we know, others have not

been implemented despite the fact that the median stable mechanism that generates

median matchings is a focal matching mechanism a market designer may want to

implement: It is attractive since it may be seen as a compromise solution that treats

both sides of the market in a symmetric way. Indeed, the above experimental results

suggest that this is exactly how median stable matchings are perceived by experiment

subjects. Furthermore, our Theorem 3 shows that no quantile stable mechanism,

including deferred acceptance, is more manipulable than another when all agents are

strategic. In addition, we show that quantile stable matchings are naturally ranked

in terms of manipulability by both sides of the market and that the two sides rank

them in an opposite way.

To present our results, let us start with the question of the existence of quantile

stable matchings. Suppose that there are k stable matchings. For each agent, con-

sider all the sets of contracts assigned to this agent in the stable matchings and rank

them according to this agent’s preference. We study the following questions:

1. Existence of stable matchings: Is the set of contracts that assigns each worker

the i-th (1  i  k) best stable matching outcome, say X

i
W , a matching, and

is it stable?

2. Polarity: When does X

i
W correspond to the matching that assigns each firm

the k + 1� i-th best stable matching outcome, say X

k+1�i
F ?

We show that two properties of agents’ preferences are crucial in addressing the above

questions: strong substitutes and the law of aggregate demand. Contracts are strong

substitutes if a contract chosen from a set of contracts is also chosen from any worse

set of contracts including that contract (Echenique and Oviedo, 2006). Contracts

satisfy the law of aggregate demand if the number of chosen contracts from a larger

set is weakly greater than the number of contracts chosen from a smaller set (Hatfield

and Milgrom, 2005). We show that these two assumptions are satisfied in a natural

model of job assignment, such as the large firms model studied in Eeckhout and

Kircher (2012).

3



Our existence results, Theorems 1 and 2, are as follows. We show that X i
W is a

stable matching if contracts are substitutes and satisfy the law of aggregate demand

for all agents, and are strong substitutes for workers (Theorem 1). On the other

hand, under these conditions, Xk+1�i
F needs not be stable. However, we show that

X

k+1�i
F is a stable matching and corresponds to X

i
W if contracts are also strong

substitutes for firms (Theorem 2). We refer to these stable matchings as the quantile

stable matchings. In particular, we show that if k is odd, the median stable matching

outcomes for all agents can be attained simultaneously by choosing i = (k + 1)/2 in

a stable matching, which is referred to as the median stable matching.4

Two corollaries of these results are worth highlighting. First, the results allow

us to show that the median and other quantile stable matchings exist and the pref-

erences of the agents on the two sides of the market are polar when contracts are

responsive (see Definition 5) for agents (Corollary 2).5 The second corollary is that if

contracts are strong substitutes then the median stable matching and other quantile

stable matchings exist, and are polar, in many-to-one matching markets with wages

when agents have quasilinear utility and contracts are written over salaries (Kelso

and Crawford, 1982). These corollaries are new even for the median stable matching.

In both corollaries, we do not need to impose the law of aggregate demand explic-

itly since in the former case responsiveness trivially implies the law of aggregate

demand, and, in the latter case, quasilinear utility with substitutability deliver the

law of aggregate demand (Hatfield and Milgrom, 2005). In the Appendix, through

examples, we show that quantile stable matchings need not exist if we weaken strong

4Methodologically, we build on the lattice structure of stable matchings (Fleiner, 2003). Fleiner
(2003) shows that under substitutes and the law of aggregate demand, the set of stable matchings
forms a lattice. In particular, the chosen set of contracts by firms (or workers) out of the union
of two stable matchings is, itself, a stable matching. This result would imply the quantile stable
matching structure if we knew that the lattice operator coincides with the supremum for firms (or
workers). While it is always so in one-to-one matching, this latter property may fail in many-to-one
and many-to-many matching markets. It is one of our contributions to recognize that the lattice
operator coincides with the supremum for firms (or workers) when strong substitutes and the law
of aggregate demand are imposed.

5We derive this corollary even though responsiveness is neither implied by nor implies strong
substitutability; see the discussion in Echenique and Oviedo (2006, Section 6.3). Of course, the
existence of the median stable matching requires k to be odd.
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substitutes or the law of aggregate demand.

Having established the existence of quantile stable matchings, we analyze the

resulting quantile stable mechanisms. For any q 2 (0, 1] the q-quantile stable mech-

anism maps agents’ preference profiles into the dkqe best stable matching for either

firms or workers, where k is the number of stable matchings.6 Examples of such

mechanisms include the mechanism that always selects the worker-optimal stable

matching, as well as a mechanism that among k stable matchings always selects the

matching that is the dk
2e-best for workers (and hence bk

2c-best for firms).

Building on Pathak and Sönmez (2013) and Chen et al. (2014a), we study ma-

nipulability of the quantile stable mechanisms. We say that a mechanism  is as

manipulable as mechanism � for an agent if whenever the agent can gain from mis-

reporting in � and achieve a certain outcome, she can also gain and achieve this

outcome by manipulating  . We say that mechanism  is more manipulable than

mechanism � for an agent if it is as manipulable and in addition there exists an

instance of the market in which she can manipulate  but not �. Our polarity result

discussed above implies that quantile stable mechanisms can be naturally ranked for

each side of the market in terms of how manipulable they are. In particular, as we

choose a higher quantile for one side of the market, we make the mechanism less

manipulable for that side, but more manipulable for the other side of the market

(note that the mechanism is then choosing a lower quantile for the other side of the

market) (Theorem 3). Thus, no quantile stable matching is better than another in

terms of manipulability when all agents in the market are strategic.

To the best of our knowledge ours is the first paper to study quantile stable

mechanisms other than deferred acceptance, and, in particular, the first to study

their incentive properties. However, the existence of quantile stable matchings—

which plays an auxiliary role in our results on quantile stable mechanisms—has been

previously established in some special cases of our setting: the college admissions

model with responsive preferences (Klaus and Klijn, 2006; Sethuraman et al., 2006),

and one-to-one matching (Teo and Sethuraman, 1998; Fleiner, 2002; Schwarz and

6dxe is the smallest integer that is weakly larger than x.
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Yenmez, 2011).7 All of these results are implied by our more general treatment;

moreover, the two corollaries highlighted earlier are new. In particular, Schwarz and

Yenmez (2011) discuss the substantial challenges involved in trying to address the

existence of quantile stable matchings for many-to-one matching markets with wages;

they leave the question open. Our Theorems 1 and 2 go beyond this prior literature

also by identifying the forces behind the quantile structure and polarity results.8

2 Model

There are two sets of agents: the set of firms F , and the set of workers W . The set

of all agents is denoted by A ⌘ F [ W . Each contract x is bilateral and specifies

the relationship between a firm-worker pair. The firm and worker associated with

contract x are represented by xF 2 F and xW 2 W , respectively. The set of all

contracts is finite and denoted by X. For a set of contracts X 0 ✓ X, X 0
a ⌘ {x|x 2

X

0
, a 2 {xF , xW}} denotes the set of contracts that agent a is associated with. A

set of contracts X 0 is feasible if for every firm-worker pair f, w, |X 0
f \X

0
w|  1, i.e.,

each firm-worker pair can sign at most one joint contract. A matching is a feasible

set of contracts.

Each agent a is endowed with a strict preference relation �a over sets of contracts

that involve agent a, i.e., over 2Xa ⌘ {X 0|X 0 ✓ Xa}. Similarly, agent a’s weak

preference relation is denoted by ⌫a, so for all Y, Y 0 ✓ Xa, Y ⌫a Y

0 if and only if

Y �a Y
0 or Y = Y

0. Given ⌫a, let Ca(X 0| ⌫a) denote agent a’s most preferred subset

of contracts involving agent a from X

0. More formally, Ca(X 0| ⌫a) ✓ X

0
a and for all

Ya ✓ X

0
a, Ca(X 0| ⌫a) ⌫a Ya. To ease notation, we suppress the dependence on ⌫a

7There are two exceptions. First, Klaus and Klijn (2010) study the existence of quantile stable
matchings in the roommates problem. Second, Schwarz and Yenmez (2011) study the case when
there is a continuum of potential wages in addition to the finite case.

8Our results also show that even when quantile stable matchings do not exist for all agents,
they may still exist for one side of the market if contracts are strong substitutes (or preferences
are responsive) for that side. In particular, when workers have unit demand, i.e., for all w 2 W

and Y ✓ X |Cw(Y )|  1, contracts are strong substitutes for workers automatically and, therefore,
worker quantile stable matchings exist if contracts are substitutes and satisfy the law of aggregate
demand for firms.
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throughout the paper (when this does not lead to ambiguity) and denote the set of

contracts chosen from X

0 ✓ X by Ca(X 0). Similarly, for any set of contracts X 0, let

CW (X 0) ⌘ [wCw(X 0) and CF (X 0) ⌘ [fCf (X 0) be the chosen sets of contracts for

the set of workers and firms, respectively. We say that a contract x is acceptable

to agent a if there exists a set of contracts Xa 3 x such that Xa �a ;; otherwise we

say that contract x is unacceptable to a.

Given agents and their preferences, we would like to find a matching that no set

of agents would like to deviate from. This is formalized in the following definition of

stability.

Definition 1. Given a preference profile �, a matching Y is stable if

1. for all a, Ca(Y ) = Ya (individual rationality) and

2. there does not exist a nonempty set of contracts Z 66✓ Y such that for all a,

Za ✓ Ca(Y [ Z) (no blocking).

Stability for a matching entails two things: Individual rationality requires that

each agent is better o↵ by holding all of the contracts assigned rather than rejecting

some of them. On the other hand, no blocking states that there is no subset of

contracts Z such that every agent a would choose Za if Z is available to them. This

is the standard definition of stability for many-to-many matching with contracts: see

Hatfield and Kominers (2012).

We make the following assumptions on agents’ preferences in our analysis.

Definition 2. Contracts are substitutes in preferences of agent a if for any sets of

contracts Y, Y

0 ✓ X such that Y ✓ Y

0 and a contract x

x 2 Ca(Y 0 [ {x}) ) x 2 Ca(Y [ {x}).

Contracts are substitutes if a contract that is chosen from a larger set is still

chosen from a smaller set including the contract. Substitutability is standard in
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matching: see Kelso and Crawford (1982); Roth (1984c). It guarantees the existence

of a stable matching in our setup (Fleiner, 2003).9

Definition 3. Contracts are strong substitutes in preferences of agent a if for

any sets of contracts Y, Y

0 ✓ X such that Ca(Y 0) ⌫a Ca(Y ),

x 2 Ca(Y 0 [ {x}) ) x 2 Ca(Y [ {x}).

Strong substitutability implies substitutability. Roughly, it states that if a con-

tract is added to the two sets and chosen from the better set, then it must also be

chosen from the worse set. Echenique and Oviedo (2006) introduced strong substi-

tutability for matching markets without contracts.10

Definition 4. Contracts satisfy the law of aggregate demand in preferences of

agent a if for all Y, Y 0 ✓ X such that Y ✓ Y

0

|Ca(Y )|  |Ca(Y 0)|.

The law of aggregate demand requires that the number of contracts chosen from

a set is bigger than the number of contracts chosen from a subset of this set. The

law of aggregate demand was introduced in Alkan (2002), Alkan and Gale (2003),

and Fleiner (2003) and its implications were thoroughly analyzed by Hatfield and

Milgrom (2005) (see also Kojima (2007)).

Although the class of environments in which contracts are strong substitutes and

satisfy the law of aggregate demand is limited, it encompasses some interesting ex-

amples. For instance, Hatfield and Milgrom (2005) show that if contracts specify

monetary payments and agents’ preferences are quasi-linear, then the law of aggre-

gate demand is satisfied. Hatfield and Milgrom (2005) also provide the endowed

9Aygün and Sönmez (2013) show that substitutability alone does not guarantee the existence
of stable matchings when choice rules are taken as primitives and prove that an axiom called
irrelevance of rejected contracts is needed for the existence. This axiom is satisfied in our setup
since choice rules are constructed using strict preferences over sets of contracts.

10As in Echenique and Oviedo (2006), our results would remain valid if we had the strong
substitutes condition require only that for agent a if for any sets of contracts Y, Y 0 ✓ X such that
Ca(Y 0) = Y

0
a, Ca(Y ) = Ya, and Ca(Y 0) ⌫a Ca(Y ), we had x 2 Ca(Y 0 [ {x}) then x 2 Ca(Y [ {x}).
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assignment model in which contracts are substitutes in addition to satisfying the

law of aggregate demand. The example below shows that in a natural special case

of the endowed assignment model contracts are not only substitutes but also strong

substitutes.

Example 1. Consider a many-to-one matching market between firms and workers.

Each firm has a technology and a set of jobs to fill. A worker can fill any of a firm’s

jobs but no firm can use one worker for two jobs, nor assign two or more workers

to the same job. A contract specifies the firm, the job, the worker, and the wage

transfer. Each worker-job pair generates an output; this output does not depend on

what other workers the firm employes or how it assigns them to jobs. The firm’s

payo↵ is the sum of outputs from its di↵erent jobs, net of wage transfers. If all

available contracts for a particular job at a firm yield negative net output, then the

firm leaves that job unfilled. Workers choose among contract based on the wages

o↵ered; if no non-negative wage contract is available, then the worker accepts none.

So far we have described the endowment assignment model of Hatfield and Mil-

grom (2005). In their model contracts are substitutes and satisfy the law of ag-

gregate demands, but the strong substitutes condition may fail. To guarantee that

this last condition is satisfied, we assume that each worker is characterized by a

one-dimensional ability parameter. If the worker’s output in a job depends only on

the job and the worker’s ability (but not on his identity otherwise), and if output is

increasing in worker’s ability, then contracts are strong substitutes.11

3 Results

In this section, we introduce quantile stable mechanisms and compare them in terms

of manipulability. First, we construct quantile stable matchings and show that they

exist if contracts are strong substitutes and satisfy the law of aggregate demand.

11We can generalize this example to a many-to-many matching market. Eeckhout and Kircher
(2012) study a continuous version of this setting. In particular, taking the limit of our model in the
case of quasi-linear preferences with monetary increments, like in Schwarz and Yenmez (2011), one
can use our results to show that the set of competitive equilibria in Eeckhout and Kircher (2012)
has a quantile structure.
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3.1 Quantile Stable Matchings

Suppose that {X1
, . . . , X

k} is the set of stable matchings. For each agent a, consider

the set of contracts that agent a signs in these matchings: {X1
a , . . . , X

k
a}. Reorder

these sets of contracts according to ⌫a such that X

(1)
a ⌫a . . . ⌫a X

(k)
a . Let X

i
F ⌘

[
f2F

X

(i)
f and X

i
W ⌘ [

w2W
X

(i)
w for 1  i  k. In words, X i

F assigns each firm the i-th

best outcome among all stable matching outcomes and X

i
W assigns each worker the

i-th best outcome among all stable matching outcomes. We analyze when these sets

of contracts are stable.

Theorem 1. Suppose that contracts are substitutes and satisfy the law of aggregate

demand for all agents. Suppose also that contracts are strong substitutes for workers.

Then for all i, X i
W is a stable matching. Moreover, for any firm f , X i

W ⌫f X

j
W if

i � j.

Under the conditions of Theorem 1, we callX i
W the i-th quantile stable match-

ing for workers. In addition, X1
W is called the worker-optimal stable matching

and X

k
W is the worker-pessimal stable matching. In the symmetric case, when

contracts are strong substitutes for firms, we define the quantile, firm-optimal, and

firm-pessimal stable matchings for firms. The worker-optimal and firm-optimal sta-

ble matchings still exist when contracts are just substitutes and satisfy the law of

aggregate demand for all agents. This follows from the lattice structure shown in

Alkan (2002) and Fleiner (2003). However, the other quantile stable matchings need

not exist: see Example 2 in the appendix.

A direct consequence of this result is that when workers have unit demand quan-

tile stable matchings exist. This answers the open question posed in Schwarz and

Yenmez (2011) about the existence of quantile stable matchings in many-to-one

matching markets when contracts are written over wages when there is a finite set

of contracts.

Corollary 1. Suppose that workers have unit demand, i.e., for all w 2 W and

Y ✓ X |Cw(Y )|  1. Suppose also that contracts are substitutes and satisfy the law
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of aggregate demand for firms. Then for all i, X i
W is a stable matching. Moreover,

for any firm f , X i
W ⌫f X

j
W if i � j.

Next we show that quantile stable matchings for firms and workers are exactly

the same with the polarization of interests property when contracts are also strong

substitutes for all firms.

Theorem 2. Suppose that contracts are strong substitutes and satisfy the law of

aggregate demand for all agents. Then for all i, X i
W and X

i
F are stable matchings;

moreover, X i
W = X

k+1�i
F .

As a corollary we can also obtain a result for the setting with responsive prefer-

ences.

Definition 5. Contracts are responsive for agent a if there exist a quota qa and

a strict relation ma on contracts Xa and the empty contract ; such that (1) agent a

prefers the empty contract to any set of contracts |Y | > qa, and (2) agent a weakly

prefers a set of contracts Y ⌘ {y1, . . . , y|Y |} ✓ Xa to another set of contracts Z ⌘
{z1, . . . , z|Z|} ✓ Xa whenever

• qa � |Y | � |Z| and yi ma zi for every 1  i  |Z| and yi ma ; for every

|Z|+ 1  i  |Y |, or

• |Y |  |Z| and yi ma zi for every 1  i  |Y | and ; ma zi for every |Y | + 1 
i  |Z|.

If contracts are responsive for agent a, then there is an order over individual

contracts and from each set of contracts agent a chooses the best contracts without

exceeding its quota. A contract x is acceptable for agent a if x ma ;. Note that

substitutes and the law of aggregate demand are implied by responsiveness.

Corollary 2. Suppose that contracts are responsive for all agents. Then for all i,

X

i
W and X

i
F are stable matchings; moreover, X i

W = X

k+1�i
F .

To reduce this corollary to Theorem 2, one can follow step by step the argument

in Roth and Sotomayor (1990) in which they prove that the classical lattice structure
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of the marriage problem carries over to the college admissions problem when colleges

have responsive preferences.12

If contracts are strong substitutes and satisfy the law of aggregate demand, then

the quantile stable matchings for both firms and workers exist. Moreover, these

matchings are aligned in the following way: the worker-optimal stable matching is

the firm-pessimal stable matching, the (2)-nd quantile stable matching for workers is

the (k � 1)-th quantile stable matching for firms, etc. In particular, when k is odd,

there exists a stable matching that assigns all agents their median stable matching

outcomes since X

(k+1)/2
F = X

(k+1)/2
W .

We provide examples in the Appendix which demonstrate that the quantile stable

matchings need not exist if we weaken strong substitutability to substitutability or

get rid of the law of aggregate demand.

3.2 Quantile Stable Mechanisms

Finally, let us define the quantile stable mechanisms and examine their incentive

properties. Fix one side of the matching market, say firms. For each q 2 (0, 1], the

q-quantile stable mechanism '

q is the mapping from agents’ preference profiles to

matchings such that for every preference profile �, the mechanism '

q(�) selects the

dkqe-th quantile stable matching for firms where k is the number of stable matchings

under �. Here, dxe denotes the lowest integer equal to or larger than x.13

12We first create an auxiliary one-to-one matching problem with contracts. In this auxiliary
problem, the set of agents consists of qa numbered copies of each agent a from the original problem;
for each pair of replicas of agents f and w from two sides of the market, the set of contracts they can
sign is isomorphic to the set of contracts f and w can sign in the original problem. We construct
agents’ preferences in the auxiliary problem as follows. Take an agent â, who is a replica of agent a
in the original problem. Take any two contracts x̂ and ŷ created from contracts x, y 2 Xa. If x �a y

in the original problem, then x̂ �â ŷ in the auxiliary problem. If x is identical to y in the original
problem, then the contracts x̂ and ŷ are with two di↵erent numbered replicas of the same original-
problem-agent, and agent â ranks the two contracts according to the numbers of the replicas. For
the auxiliary one-to-one matching problem with contracts, Theorem 2 implies that there is a lattice
structure on stable matchings. Following the same steps as Roth and Sotomayor (1990) we then
conclude that this lattice induces a lattice on stable matchings in the original problem.

13All our results remain valid for mechanisms that always select the bkqc-th quantile stable
matching, where bxc is the highest integer smaller than or equal than x.
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Theorem 2 shows that the quantile stable mechanisms are well defined when we

restrict attention to the domain of preferences that satisfy strong substitutes and

the law of aggregate demand. Corollary 2 shows that they are also well defined on

the domain of responsive preferences. In what follows we assume that the quantile

stable mechanisms we study are defined on one of these two preference domains.

Importantly, each of these two preference domains is closed in the sense of Chen

et al. (2014a): A preference profile domain P is closed if for all �2 P and for all

matchings Y that are stable with respect to �, if the preference relation �0
a ranks sets

of contracts in the same way as �a except that only contracts in Ya are acceptable

to agent a, then (�0
a,��a) 2 P . This allows us to rely on their results.

We define manipulability as in Chen et al. (2014a); these definitions are based on

Pathak and Sönmez (2013).14

Definition 6. Mechanism  is as manipulable as mechanism � for agent a if for

any preference profile �2 P , the following holds: if there exist agent a and preference

relation �0
a2 Pa such that �(�0

a,��a)(a) �a �(�)(a), then there exists a preference

relation �00
a2 Pa such that  (�00

a,��a)(a) = �(�0
a,��a)(a) and  (�00

a,��a)(a) �a

 (�)(a).

Definition 7. Mechanism  is more manipulable than mechanism � for agent

a if  is as manipulable as � for agent a and there is a profile of preference relations

�2 P at which agent a can manipulate  but not �; that is, for all preference

relations �0
a2 Pa we have �(�)(a) ⌫a �(�0

a,��a)(a), and there exists a preference

profile �00
a2 Pa such that  (�00

a,��a)(a) �a  (�)(a).

Our polarity result and Theorem 2 in Chen et al. (2014a) imply the following.

Theorem 3. Let q, q0 2 (0, 1] be such that q > q

0. Then either

• '

q = '

q0, or

14The definition of more manipulability in Chen et al. (2014a) is slightly more demanding then
the analogous definition in Pathak and Sönmez (2013) (see Chen et al. (2014a) for a discussion).
We formulate our Theorem 3 for the more demanding definition, but, a fortiori, it remains valid for
the less demanding one.
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• '

q is more manipulable than 'q0 for all firms and 'q0 is more manipulable than

'

q for all workers.

Finally, we show the following complementary result.

Theorem 4. For any q, q

0 2 (0, 1] such that q 6= q

0, there exists a matching market

such that 'q is di↵erent than 'q0.

Proof. Assume that q > q

0 without loss of generality. Let k be such that k(q�q

0) > 1.

Consider the following market.

All agents have unit demand and every firm-worker pair uniquely defines a con-

tract. Let firm fi rank workers as follows wi �fi wi+1 �fi . . . �fi wi+k�1 (sub-

scripts are added modulo k) and let worker wi+k�1 rank firms as follows fi �wi+k�1

fi�1 �wi+k�1
. . . �wi+k�1

fi�k+1. Under this preference profile there are k distinct

stable matchings and all quantile stable matchings are di↵erent.

In this market, the q-quantile stable mechanism is di↵erent from the q

0-quantile

stable mechanism since k(q � q

0) > 1.

Appendix: Omitted Proofs and Examples

First, we provide two lemmas that are used in the proofs of Theorems 1 and 2.

There exists at least one stable matching once we impose that contracts are sub-

stitutes (Fleiner, 2003; Klaus and Walzl, 2009; Hatfield and Kominers, 2012). Here,

we study the structure of the set of stable matchings if, in addition to substitutabil-

ity, contracts satisfy the law of aggregate demand. In particular, we are interested

in when this set is a lattice with respect to the following operators.

Let Y and Y

0 be two sets of contracts. Define the following sets of contracts:

Y _F Y

0 =
f

[
max
⌫f

{Yf , Y
0
f},

and

Y ^F Y

0 =
f

[
min
⌫f

{Yf , Y
0
f}.
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Operator _F chooses the most preferred set of contracts for each firm. On the other

hand, ^F chooses the least preferred set of contracts for each firm. Analogously, we

define Y _W Y

0 and Y ^W Y

0:

Y _W Y

0 =
w

[
max
⌫w

{Yw, Y
0
w},

and

Y ^W Y

0 =
w

[
min
⌫w

{Yw, Y
0
w}.

By definition, all of these operators define a set of contracts but in general they

do not have to be stable matchings. We study this question in the following lemma.

Lemma 1. Suppose that contracts are substitutes and satisfy the law of aggregate

demand for all agents. Suppose also that contracts are strong substitutes for workers.

Then, for any two stable matchings Y and Y

0, Y _W Y

0 and Y ^W Y

0 are stable

matchings. Moreover, for each firm f , (Y ^W Y

0) ⌫f Y, Y

0 and Y, Y

0 ⌫f (Y _W Y

0).

Proof. [Proof of Lemma 1] Let x 2 Y _W Y

0, so there exists w such that x 2
max
⌫w

{Yw, Y
0
w}. We want to show that x 2 Cw(Y [ Y

0). If x 2 Yw \ Y

0
w then the claim

follows from the following observation that is implied by Corollary 26 and Equation

38 in Fleiner (2003).

Observation 1. Suppose that contracts are substitutes and satisfy the law of aggre-

gate demand for all agents. If Y and Y

0 are stable matchings, then CW (Y [ Y

0) and

CF (Y [ Y

0) are stable matchings such that

Y [ Y

0 = CF (Y [ Y

0) [ CW (Y [ Y

0) and Y \ Y

0 = CF (Y [ Y

0) \ CW (Y [ Y

0).

Let us thus suppose x 2 Yw and x 62 Y

0
w. This implies that Yw ⌫w Y

0
w.

Since Y is stable, we have x 2 Yw = Cw(Yw) = Cw(Yw[{x}). Thus Yw ⌫w Y

0
w and

strong substitutes imply x 2 Cw(Y 0
w[{x}). Let f be xF . If x 2 Cf (Y 0

f[{x}), then {x}
would block Y

0, which contradicts the stability of Y 0. Therefore, x 62 Cf (Y 0
f [ {x}).

Substitutability then implies that x 62 Cf (Y 0
f [ Yf ) and x 62 CF (Y 0 [ Y ). The

15



observation highlighted above then implies x 2 CW (Y [ Y

0). Hence Y _W Y

0 ✓
CW (Y [ Y

0).

Since Y , Y 0, and CW (Y 0 [ Y ) are stable matchings, the rural hospital theorem

implies |Yw0 | = |Y 0
w0 | = |Cw0(Y [Y 0)| for every worker w0.15 By construction, for every

worker w0, |(Y _W Y

0)w0 | = |Yw0 | = |Y 0
w0 |, so |Y _W Y

0| = |Y | = |Y 0| = |CW (Y [ Y

0)|.
The inclusion proven above allows us to conclude that Y _W Y

0 = CW (Y [ Y

0).

Therefore, Y _W Y

0 is a stable matching.

Denote by � the indicator function on sets of contracts. By the observation

highlighted above, �(Y )+�(Y 0) = �(CF (Y [Y 0))+�(CW (Y [Y 0)) and, by definition,

�(Y _W Y

0)+�(Y ^W Y

0) = �(Y )+�(Y 0). We thus get �(Y _W Y

0)+�(Y ^W Y

0) =

�(CF (Y [Y

0))+�(CW (Y [Y

0)). Above we have shown that Y _W Y

0 = CW (Y [Y

0),

so �(Y _W Y

0) = �(CW (Y [Y

0)). Therefore, �(Y ^W Y

0) = �(CF (Y [Y

0)) and thus

Y ^W Y

0 = CF (Y [ Y

0), so Y ^W Y

0 is a stable matching.

The last claim of the lemma now follows similarly to the polarization of inter-

est property established by Echenique and Oviedo (2006) (Theorem 9.8); while they

derive the polarization of interests for many-to-many matching markets without con-

tracts, an analogous argument works in the setting with contracts we study.

Next we impose that contracts are strong substitutes for all agents to show that

_F = ^W and _W = ^F .

Lemma 2. Suppose that contracts are strong substitutes and satisfy the law of

aggregate demand for all agents. Then for any two stable matchings Y and Y

0,

Y _F Y

0 = Y ^W Y

0, Y ^F Y

0 = Y _W Y

0. Moreover, Y _F Y

0 and Y ^F Y

0 are stable

matchings.

Proof. This result follows directly from Lemma 1 above. In the proof of Lemma 1, we

have shown that Y _W Y

0 and Y ^W Y

0 are stable matchings, Y _W Y

0 = CW (Y [Y

0),

and Y ^W Y

0 = CF (Y [ Y

0), relying on the assumption that contracts are strong

15 The rural hospitals theorem says that any agent signs the same number of contracts in any
stable matching when contracts are substitutes and satisfy the law of aggregate demand; in the
setting of our lemma it was proved by Alkan (2002); Fleiner (2003); Hatfield and Kominers (2012),
see also Roth (1984b).
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substitutes for workers. Symmetrically, since contracts are strong substitutes for

firms, Y _F Y

0 and Y ^F Y

0 are stable matchings, where Y _F Y

0 = CF (Y [Y

0), and

Y ^F Y

0 = CW (Y [Y

0). Therefore, Y _W Y

0 = Y ^F Y

0 and Y ^W Y

0 = Y _F Y

0.

Proof. [Proofs of Theorems 1 and 2] First we prove that if Y _W Y

0 and Y ^W Y

0 are

stable matchings for any two stable matchings Y and Y

0, then X

i
W is also a stable

matching. This proves the first part of Theorem 1 and the first part of Theorem 2.

The second part of Theorem 1 follows directly from Lemma 1. Next we prove the

second part of Theorem 2: X i
W = X

k+1�i
F .

Consider all combinations of i sets of stable matchings Y 1
, . . . , Y

i where 1  i 
k. For each combination consider Y 1 ^W . . . ^W Y

i, which assigns each worker the

least preferred set of contracts. There are l ⌘
�
k
i

�
of these stable matchings; denote

them by Z

1
, . . . , Z

l. Finally, let ⇠i ⌘ Z

1 _W . . . _W Z

l be the set of contracts that

assigns each worker the best set of contracts among available ones. By Lemma 1, ⇠i

is a stable matching. We claim that ⇠i = X

i
W .

For each Z

j and w, Zj
w �w X

(i)
w by construction of Zj. Similarly, there exists j⇤

such that Zj⇤
w = X

(i)
w . Therefore, for all w, ⇠iw = X

(i)
w , which implies ⇠i = X

i
W .

To finish the proof we show X

i
W = X

k+1�i
F under the conditions of Theorem 2.

By Lemma 2, Y _F Y
0 = Y ^W Y

0, Y ^F Y
0 = Y _W Y

0. Therefore, Y 1_W . . ._W Y

i =

Y

1^F . . .^F Y

i. Therefore, for each Z

j and f , Zj
f ⌫f X

(k+1�i)
f by construction of Zj.

Similarly, there exists j

⇤ such that Zj⇤ = X

(k+1�i)
f . Since ⇠i ⌘ Z

1 ^W . . . ^W Z

l =

Z

1 _W . . . _W Z

l by Lemma 2 ⇠i = X

k+1�i
F , which implies X i

W = X

k+1�i
F .

In the following example, we show that strong substitutes cannot be replaced

with substitutes in Theorems 1 and 2.

Example 2. There are two firms f1, f2; and four workers w1, w2, w3, and w4. Workers

have unit demand. There is only one contract that each firm-worker pair can sign.

To ease notation, each contract is denoted by the pair of agents associated with

this contract. Let x1 = {f1, w1}, x2 = {f1, w2}, x3 = {f1, w3}, x4 = {f1, w4},
x5 = {f2, w1}, x6 = {f2, w2}, x7 = {f2, w3}, and x8 = {f2, w4}. Preferences are as
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follows:16

⌫f1 : x1x3, x1x4, x2x3, x2x4, x1, x3, x2, x4;

⌫f2 : x6x8, x5x8, x6x7, x5x7, x6, x8, x5, x7;

⌫w1 : x5, x1;

⌫w2 : x2, x6;

⌫w3 : x7, x3; and

⌫w4 : x4, x8.

Note that contracts are substitutes and satisfy the law of aggregate demand for

all agents. Moreover, they are also strong substitutes for workers and f2. However,

contracts are not strong substitutes for f1 because even though x1x4 ⌫f1 x2x3, and

x4 2 Cf1({x1, x4} [ {x4}) we have x4 62 Cf1({x2, x3} [ {x4}) = {x2, x3}.
There are four stable matchings: µ1 ⌘ {x1, x3, x6, x8}, µ2 ⌘ {x1, x4, x6, x7},

µ3 ⌘ {x2, x3, x5, x8}, and µ4 ⌘ {x2, x4, x5, x7}. When we use the quantile con-

struction above we get: X

1
F = {x1, x3, x6, x8} = µ1, X2

F = {x1, x4, x5, x8}, X3
F =

{x2, x3, x6, x7}, X4
F = {x2, x4, x5, x7} = µ4; and X

1
W = {x2, x4, x5, x7} = µ1, X2

W =

{x2, x4, x5, x7} = µ1, X3
W = {x1, x3, x6, x8} = µ4, X4

W = {x1, x3, x6, x8} = µ4. Here

X

2
F and X

3
F are not even matchings, let alone stable.

Finally, we show that the law of aggregate demand is also necessary in Theorems

1 and 2, that is, the law of aggregate demand is necessary for the existence of quantile

matchings. In the following example contracts are strong substitutes for all agents

but the law of aggregate demand fails. There are four stable matchings including

the firm-optimal and the worker-optimal stable matchings, but other quantile stable

matchings do not exist.17

Example 3. There are five firms f1, f2, f3, f4, f5; and five workers w1, w2, w3, w4, and

16A set of contracts {xi, . . . , xj} is denoted by xi . . . xj to ease notation. If a set of contracts
is omitted from the preference list of an agent, the agent prefers the null contract to that set of
contracts.

17This example develops Example 5 of Alkan and Gale (2003) who use it to show that the law
of aggregate demand is necessary to get the lattice structure of stable matchings.
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w5. Workers have unit demand. For each firm-worker pair, there is only one contract

that they can sign. To ease notation, each contract is denoted by the pair of agents

associated with this contract. Let x1 = {f1, w1}, x2 = {f1, w3}, x3 = {f1, w5}, x4 =

{f2, w2}, x5 = {f2, w4}, x6 = {f2, w5}, x7 = {f3, w3}, x8 = {f3, w1}, x9 = {f4, w4},
x10 = {f4, w2}, and x11 = {f5, w5}. Preferences are as follows:

⌫f1 : x1, x2x3, x2, x3;

⌫f2 : x4, x5x6, x5, x6;

⌫f3 : x7, x8;

⌫f4 : x9, x10;

⌫f5 : x11;

⌫w1 : x8, x1;

⌫w2 : x10, x4;

⌫w3 : x2, x7

⌫w4 : x5, x9; and

⌫w5 : x3, x6, x11.

Since workers f3, f4, and f5 have unit demand, contracts are strong substitutes

and satisfy the law of aggregate demand for these agents. However, even though

contracts are strong substitutes for f1 and f2, they do not satisfy the law of aggregate

demand for these two firms. This is rather straightforward. For example, for f1,

Cf1({x1, x2, x3}) = x1 and Cf1({x2, x3}) = {x2, x3}, which imply |Cf1({x1, x2, x3})| <
|Cf1({x2, x3})|.

There are four stable matchings: µ1 ⌘ {x1, x4, x7, x9, x11}, µ2 ⌘ {x1, x5, x6, x7, x10},
µ3 ⌘ {x2, x3, x4, x8, x9}, and µ4 ⌘ {x2, x3, x5, x8, x10}. When we use the quantile con-

struction above we get: X1
F = {x1, x4, x7, x9, x11} = µ1, X2

F = {x1, x4, x7, x9}, X3
F =

{x2, x3, x5, x6, x8, x10},X4
F = {x2, x3, x5, x8, x10} = µ4; andX

1
W = {x2, x3, x5, x8, x10} =

µ4,X2
W = {x2, x3, x5, x8, x10} = µ4,X3

W = {x1, x4, x6, x7, x9},X4
W = {x1, x4, x7, x9, x11} =

19



µ4. Here X

2
F is not stable since x11 is a blocking contract, X3

F is not stable because

it is not individually rational for w5 as Cw5({x3, x6}) = x3, and X

3
W is not stable

because it is not individually rational for f2 as Cf2({x4, x6}) = x4.
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